Skip to content

Instantly share code, notes, and snippets.

@graylan0
Created December 26, 2023 19:35
Show Gist options
  • Save graylan0/1707fca37e32801400342a0e797ec124 to your computer and use it in GitHub Desktop.
Save graylan0/1707fca37e32801400342a0e797ec124 to your computer and use it in GitHub Desktop.
from weaviate.embedded import EmbeddedOptions
import tkinter as tk
import threading
import os
import aiosqlite
import logging
import numpy as np
import base64
import queue
import uuid
import customtkinter
import requests
import io
import sys
import random
import asyncio
import weaviate
import re
from concurrent.futures import ThreadPoolExecutor
from summa import summarizer
from textblob import TextBlob
from weaviate.util import generate_uuid5
from PIL import Image, ImageTk
from llama_cpp import Llama
from nltk import pos_tag, word_tokenize
from nltk.corpus import wordnet as wn
import nltk
import json
from os import path
import weaviate
import uvicorn
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from fastapi import Security, Depends, HTTPException
from fastapi.security.api_key import APIKeyHeader
import re
import logging
from nltk import pos_tag, word_tokenize
from collections import Counter
client = weaviate.Client(
embedded_options=EmbeddedOptions()
)
bundle_dir = path.abspath(path.dirname(__file__))
path_to_config = path.join(bundle_dir, 'config.json')
model_path = path.join(bundle_dir, 'llama-2-7b-chat.ggmlv3.q8_0.bin')
logo_path = path.join(bundle_dir, 'logo.png')
API_KEY_NAME = "access_token"
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
def get_api_key(api_key_header: str = Security(api_key_header)):
if api_key_header == API_KEY:
return api_key_header
else:
raise HTTPException(status_code=403, detail="Invalid API Key")
def download_nltk_data():
try:
resources = {
'tokenizers/punkt': 'punkt',
'taggers/averaged_perceptron_tagger': 'averaged_perceptron_tagger'
}
for path, package in resources.items():
try:
nltk.data.find(path)
print(f"'{package}' already downloaded.")
except LookupError:
nltk.download(package)
print(f"'{package}' downloaded successfully.")
except Exception as e:
print(f"Error downloading NLTK data: {e}")
def load_config(file_path=path_to_config):
with open(file_path, 'r') as file:
return json.load(file)
q = queue.Queue()
logger = logging.getLogger(__name__)
config = load_config()
DB_NAME = config['DB_NAME']
API_KEY = config['API_KEY']
WEAVIATE_ENDPOINT = config['WEAVIATE_ENDPOINT']
WEAVIATE_QUERY_PATH = config['WEAVIATE_QUERY_PATH']
client = weaviate.Client(
url=WEAVIATE_ENDPOINT,
)
weaviate_client = weaviate.Client(url=WEAVIATE_ENDPOINT)
app = FastAPI()
def run_api():
uvicorn.run(app, host="127.0.0.1", port=8000)
api_thread = threading.Thread(target=run_api, daemon=True)
api_thread.start()
class UserInput(BaseModel):
message: str
@app.post("/process/")
async def process_input(user_input: UserInput, api_key: str = Depends(get_api_key)):
try:
response = llama_generate(user_input.message, weaviate_client)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
async def init_db():
try:
async with aiosqlite.connect(DB_NAME) as db:
await db.execute("""
CREATE TABLE IF NOT EXISTS responses (
id INTEGER PRIMARY KEY AUTOINCREMENT,
trideque_point INT,
response TEXT,
response_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
user_id INT
)
""")
await db.execute("""
CREATE TABLE IF NOT EXISTS context (
id INTEGER PRIMARY KEY AUTOINCREMENT,
trideque_point INT,
summarization_context TEXT,
full_text TEXT
)
""")
await db.execute("""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
relationship_state TEXT
)
""")
await db.commit()
except Exception as e:
logger.error(f"Error initializing database: {e}")
llm = Llama(
model_path=model_path,
n_gpu_layers=-1,
n_ctx=3900,
)
def is_code_like(chunk):
code_patterns = r'\b(def|class|import|if|else|for|while|return|function|var|let|const|print)\b|[\{\}\(\)=><\+\-\*/]'
return bool(re.search(code_patterns, chunk))
def determine_token(chunk, max_words_to_check=100):
if not chunk:
return "[attention]"
if is_code_like(chunk):
return "[code]"
words = word_tokenize(chunk)[:max_words_to_check]
tagged_words = pos_tag(words)
pos_counts = Counter(tag[:2] for _, tag in tagged_words)
most_common_pos, _ = pos_counts.most_common(1)[0]
if most_common_pos == 'VB':
return "[action]"
elif most_common_pos == 'NN':
return "[subject]"
elif most_common_pos in ['JJ', 'RB']:
return "[description]"
else:
return "[general]"
def find_max_overlap(chunk, next_chunk):
max_overlap = min(len(chunk), 400)
return next((overlap for overlap in range(max_overlap, 0, -1) if chunk.endswith(next_chunk[:overlap])), 0)
def truncate_text(text, max_words=25):
return ' '.join(text.split()[:max_words])
def fetch_relevant_info(chunk, weaviate_client):
if not weaviate_client:
logger.error("Weaviate client is not provided.")
return ""
query = f"""
{{
Get {{
InteractionHistory(nearText: {{
concepts: ["{chunk}"],
certainty: 0.7
}}) {{
user_message
ai_response
.with_limit(1)
}}
}}
}}
"""
try:
response = weaviate_client.query.raw(query)
logger.debug(f"Query sent: {query}")
logger.debug(f"Response received: {response}")
if response and 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']:
interaction = response['data']['Get']['InteractionHistory'][0]
return f"{truncate_text(interaction['user_message'])} {truncate_text(interaction['ai_response'])}"
else:
logger.error("Weaviate client returned no relevant data for query: " + query)
return ""
except Exception as e:
logger.error(f"Weaviate query failed: {e}")
return ""
def llama_generate(prompt, weaviate_client=None):
config = load_config()
max_tokens = config.get('MAX_TOKENS', 3999)
chunk_size = config.get('CHUNK_SIZE', 1250)
try:
prompt_chunks = [prompt[i:i + chunk_size] for i in range(0, len(prompt), chunk_size)]
responses = []
last_output = ""
for i, current_chunk in enumerate(prompt_chunks): # Renamed 'chunk' to 'current_chunk'
relevant_info = fetch_relevant_info(current_chunk, weaviate_client)
combined_chunk = f"{relevant_info} {current_chunk}"
token = determine_token(combined_chunk)
output = tokenize_and_generate(combined_chunk, token, max_tokens, chunk_size)
if output is None:
logger.error(f"Failed to generate output for chunk: {combined_chunk}")
continue
if i > 0 and last_output:
overlap = find_max_overlap(last_output, output)
output = output[overlap:]
responses.append(output)
last_output = output
final_response = ''.join(responses)
return final_response if final_response else None
except Exception as e:
logger.error(f"Error in llama_generate: {e}")
return None
def tokenize_and_generate(chunk, token, max_tokens, chunk_size):
try:
inputs = llm(f"[{token}] {chunk}", max_tokens=min(max_tokens, chunk_size))
if inputs is None or not isinstance(inputs, dict):
logger.error(f"Llama model returned invalid output for input: {chunk}")
return None
choices = inputs.get('choices', [])
if not choices or not isinstance(choices[0], dict):
logger.error("No valid choices in Llama output")
return None
return choices[0].get('text', '')
except Exception as e:
logger.error(f"Error in tokenize_and_generate: {e}")
return None
def run_async_in_thread(self, loop, coro_func, user_input, result_queue):
try:
asyncio.set_event_loop(loop)
coro = coro_func(user_input, result_queue)
loop.run_until_complete(coro)
finally:
loop.close()
def truncate_text(self, text, max_length=35):
return text if len(text) <= max_length else text[:max_length] + '...'
def extract_verbs_and_nouns(text):
words = word_tokenize(text)
tagged_words = pos_tag(words)
verbs_and_nouns = [word for word, tag in tagged_words if tag.startswith('VB') or tag.startswith('NN')]
return verbs_and_nouns
class App(customtkinter.CTk):
def __init__(self):
super().__init__()
self.setup_gui()
self.response_queue = queue.Queue()
self.client = weaviate.Client(url=WEAVIATE_ENDPOINT)
self.executor = ThreadPoolExecutor(max_workers=4)
async def retrieve_past_interactions(self, user_input, result_queue):
try:
keywords = extract_verbs_and_nouns(user_input)
concepts_query = ' '.join(keywords)
def fetch_relevant_info(concepts_query, weaviate_client):
if weaviate_client and concepts_query:
query = f"""
{{
Get {{
InteractionHistory(nearText: {{
concepts: ["{concepts_query}"],
certainty: 0.7
}}) {{
user_message
ai_response
.with_limit(1)
}}
}}
}}
"""
response = weaviate_client.query.raw(query)
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']:
interaction = response['data']['Get']['InteractionHistory'][0]
return interaction['user_message'], interaction['ai_response']
else:
return "", ""
return "", ""
user_message, ai_response = fetch_relevant_info(concepts_query, self.client)
if user_message and ai_response:
summarized_interaction = summarizer.summarize(f"{user_message} {ai_response}")
sentiment = TextBlob(summarized_interaction).sentiment.polarity
processed_interaction = {
"user_message": user_message,
"ai_response": ai_response,
"summarized_interaction": summarized_interaction,
"sentiment": sentiment
}
result_queue.put([processed_interaction])
else:
logger.error("No relevant interactions found for the given user input.")
result_queue.put([])
except Exception as e:
logger.error(f"An error occurred while retrieving interactions: {e}")
result_queue.put([])
def process_response_and_store_in_weaviate(self, user_message, ai_response):
response_blob = TextBlob(ai_response)
keywords = response_blob.noun_phrases
sentiment = response_blob.sentiment.polarity
interaction_object = {
"userMessage": user_message,
"aiResponse": ai_response,
"keywords": list(keywords),
"sentiment": sentiment
}
interaction_uuid = str(uuid.uuid4())
try:
self.client.data_object.create(
data_object=interaction_object,
class_name="InteractionHistory",
uuid=interaction_uuid
)
print(f"Interaction stored in Weaviate with UUID: {interaction_uuid}")
except Exception as e:
print(f"Error storing interaction in Weaviate: {e}")
def __exit__(self, exc_type, exc_value, traceback):
self.executor.shutdown(wait=True)
def create_interaction_history_object(self, user_message, ai_response):
interaction_object = {
"user_message": user_message,
"ai_response": ai_response
}
try:
object_uuid = uuid.uuid4()
self.client.data_object.create(
data_object=interaction_object,
class_name="InteractionHistory",
uuid=object_uuid
)
print(f"Interaction history object created with UUID: {object_uuid}")
except Exception as e:
print(f"Error creating interaction history object in Weaviate: {e}")
def map_keywords_to_weaviate_classes(self, keywords, context):
try:
summarized_context = summarizer.summarize(context)
except Exception as e:
print(f"Error in summarizing context: {e}")
summarized_context = context
try:
sentiment = TextBlob(summarized_context).sentiment
except Exception as e:
print(f"Error in sentiment analysis: {e}")
sentiment = TextBlob("").sentiment
positive_class_mappings = {
"keyword1": "PositiveClassA",
"keyword2": "PositiveClassB",
}
negative_class_mappings = {
"keyword1": "NegativeClassA",
"keyword2": "NegativeClassB",
}
default_mapping = {
"keyword1": "NeutralClassA",
"keyword2": "NeutralClassB",
}
if sentiment.polarity > 0:
mapping = positive_class_mappings
elif sentiment.polarity < 0:
mapping = negative_class_mappings
else:
mapping = default_mapping
mapped_classes = {}
for keyword in keywords:
try:
if keyword in mapping:
mapped_classes[keyword] = mapping[keyword]
except KeyError as e:
print(f"Error in mapping keyword '{keyword}': {e}")
return mapped_classes
async def retrieve_past_interactions(self, user_input, result_queue):
try:
keywords = extract_verbs_and_nouns(user_input)
concepts_query = ' '.join(keywords)
query = f"""
{{
Get {{
InteractionHistory(nearText: {{
concepts: ["{concepts_query}"],
certainty: 0.7
}}) {{
user_message
ai_response
.with_limit(5) # Adjust the limit as needed
}}
}}
}}
"""
response = self.client.query.raw(query)
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']:
interactions = response['data']['Get']['InteractionHistory']
result_queue.put(interactions)
else:
result_queue.put([])
except Exception as e:
logger.error(f"An error occurred while retrieving interactions: {e}")
result_queue.put([])
def generate_response(self, user_input):
try:
result_queue = queue.Queue()
loop = asyncio.new_event_loop()
include_past_context = "[pastcontext]" in user_input and "[/pastcontext]" in user_input
user_input = user_input.replace("[pastcontext]", "").replace("[/pastcontext]", "")
if include_past_context:
past_interactions_thread = threading.Thread(target=self.run_async_in_thread, args=(loop, self.retrieve_past_interactions, user_input, result_queue))
past_interactions_thread.start()
past_interactions_thread.join()
past_interactions = result_queue.get()
past_context_combined = "\n".join([f"User: {interaction['user_message']}\nAI: {interaction['ai_response']}" for interaction in past_interactions])
past_context = past_context_combined[-165:]
else:
past_context = ""
complete_prompt = f"{past_context}\nUser: {user_input}"
response = llama_generate(complete_prompt, self.client)
if response:
response_text = response
self.response_queue.put({'type': 'text', 'data': response_text})
else:
logger.error("No response generated by llama_generate")
except Exception as e:
logger.error(f"Error in generate_response: {e}")
def run_async_in_thread(self, loop, coro_func, user_input, result_queue):
asyncio.set_event_loop(loop)
coro = coro_func(user_input, result_queue)
loop.run_until_complete(coro)
async def fetch_interactions(self):
try:
query = {
"query": """
{
Get {
InteractionHistory(sort: [{path: "response_time", order: desc}], limit: 5) {
user_message
ai_response
response_time
}
}
}
"""
}
response = self.client.query.raw(query)
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']:
interactions = response['data']['Get']['InteractionHistory']
return [{'user_message': interaction['user_message'], 'ai_response': interaction['ai_response'], 'response_time': interaction['response_time']} for interaction in interactions]
else:
return []
except Exception as e:
logger.error(f"Error fetching interactions from Weaviate: {e}")
return []
def on_submit(self, event=None):
download_nltk_data()
user_input = self.input_textbox.get("1.0", tk.END).strip()
if user_input:
self.text_box.insert(tk.END, f"You: {user_input}\n")
self.input_textbox.delete("1.0", tk.END)
self.input_textbox.config(height=1)
self.text_box.see(tk.END)
self.executor.submit(self.generate_response, user_input)
self.executor.submit(self.generate_images, user_input)
self.after(100, self.process_queue)
return "break"
def create_object(self, class_name, object_data):
unique_string = f"{object_data['time']}-{object_data['user_message']}-{object_data['ai_response']}"
object_uuid = uuid.uuid5(uuid.NAMESPACE_URL, unique_string).hex
try:
self.client.data_object.create(object_data, object_uuid, class_name)
print(f"Object created with UUID: {object_uuid}")
except Exception as e:
print(f"Error creating object in Weaviate: {e}")
return object_uuid
def process_queue(self):
try:
while True:
response = self.response_queue.get_nowait()
if response['type'] == 'text':
self.text_box.insert(tk.END, f"AI: {response['data']}\n")
elif response['type'] == 'image':
self.image_label.configure(image=response['data'])
self.image_label.image = response['data']
self.text_box.see(tk.END)
except queue.Empty:
self.after(100, self.process_queue)
def extract_keywords(self, message):
try:
blob = TextBlob(message)
nouns = blob.noun_phrases
return list(nouns)
except Exception as e:
print(f"Error in extract_keywords: {e}")
return []
def generate_images(self, message):
try:
url = config['IMAGE_GENERATION_URL']
payload = {
"prompt": message,
"steps": 79,
"seed": random.randrange(sys.maxsize),
"enable_hr": "false",
"denoising_strength": "0.7",
"cfg_scale": "7",
"width": 326,
"height": 656,
"restore_faces": "true",
}
response = requests.post(url, json=payload)
if response.status_code == 200:
try:
r = response.json()
for img_data in r['images']:
if ',' in img_data:
base64_data = img_data.split(",", 1)[1]
else:
base64_data = img_data
image_data = base64.b64decode(base64_data)
image = Image.open(io.BytesIO(image_data))
img_tk = ImageTk.PhotoImage(image)
self.response_queue.put({'type': 'image', 'data': img_tk})
self.image_label.image = img_tk
file_name = f"generated_image_{uuid.uuid4()}.png"
image_path = os.path.join("saved_images", file_name)
if not os.path.exists("saved_images"):
os.makedirs("saved_images")
image.save(image_path)
except ValueError as e:
print("Error processing image data: ", e)
else:
print("Error generating image: ", response.status_code)
except Exception as e:
logger.error(f"Error in generate_images: {e}")
def setup_gui(self):
self.title("OneLoveIPFS AI")
window_width = 1200
window_height = 900
screen_width = self.winfo_screenwidth()
screen_height = self.winfo_screenheight()
center_x = int(screen_width/2 - window_width/2)
center_y = int(screen_height/2 - window_height/2)
self.geometry(f'{window_width}x{window_height}+{center_x}+{center_y}')
self.grid_columnconfigure(1, weight=1)
self.grid_columnconfigure((2, 3), weight=0)
self.grid_rowconfigure((0, 1, 2), weight=1)
self.sidebar_frame = customtkinter.CTkFrame(self, width=440, corner_radius=0)
self.sidebar_frame.grid(row=0, column=0, rowspan=4, sticky="nsew")
logo_img = Image.open(logo_path)
logo_photo = ImageTk.PhotoImage(logo_img)
self.logo_label = customtkinter.CTkLabel(self.sidebar_frame, image=logo_photo)
self.logo_label.image = logo_photo
self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10))
self.image_label = customtkinter.CTkLabel(self.sidebar_frame)
self.image_label.grid(row=1, column=0, padx=20, pady=10)
placeholder_image = Image.new('RGB', (140, 140), color = (73, 109, 137))
self.placeholder_photo = ImageTk.PhotoImage(placeholder_image)
self.image_label.configure(image=self.placeholder_photo)
self.image_label.image = self.placeholder_photo
self.text_box = customtkinter.CTkTextbox(self, bg_color="white", text_color="white", border_width=0, height=260, width=50, font=customtkinter.CTkFont(size=18))
self.text_box.grid(row=0, column=1, rowspan=3, columnspan=3, padx=(20, 20), pady=(20, 20), sticky="nsew")
self.input_textbox_frame = customtkinter.CTkFrame(self)
self.input_textbox_frame.grid(row=3, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew")
self.input_textbox_frame.grid_columnconfigure(0, weight=1)
self.input_textbox_frame.grid_rowconfigure(0, weight=1)
self.input_textbox = tk.Text(self.input_textbox_frame, font=("Roboto Medium", 10),
bg=customtkinter.ThemeManager.theme["CTkFrame"]["fg_color"][1 if customtkinter.get_appearance_mode() == "Dark" else 0],
fg=customtkinter.ThemeManager.theme["CTkLabel"]["text_color"][1 if customtkinter.get_appearance_mode() == "Dark" else 0], relief="flat", height=1)
self.input_textbox.grid(padx=20, pady=20, sticky="nsew")
self.input_textbox_scrollbar = customtkinter.CTkScrollbar(self.input_textbox_frame, command=self.input_textbox.yview)
self.input_textbox_scrollbar.grid(row=0, column=1, sticky="ns", pady=5)
self.input_textbox.configure(yscrollcommand=self.input_textbox_scrollbar.set)
self.send_button = customtkinter.CTkButton(self, text="Send", command=self.on_submit)
self.send_button.grid(row=3, column=3, padx=(0, 20), pady=(20, 20), sticky="nsew")
self.input_textbox.bind('<Return>', self.on_submit)
if __name__ == "__main__":
try:
app = App()
loop = asyncio.get_event_loop()
loop.run_until_complete(init_db())
app.mainloop()
except Exception as e:
logger.error(f"Application error: {e}")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment