Skip to content

Instantly share code, notes, and snippets.

@graylan0
Created November 24, 2023 19:26
Show Gist options
  • Save graylan0/200d842cc8e63276cada52ddfbed171a to your computer and use it in GitHub Desktop.
Save graylan0/200d842cc8e63276cada52ddfbed171a to your computer and use it in GitHub Desktop.
(base) PS C:\Users\Shadow> cd C:\Users\Shadow\chaos
(base) PS C:\Users\Shadow\chaos> python chaosdb.py
ggml_init_cublas: found 1 CUDA devices:
Device 0: NVIDIA RTX A4500, compute capability 8.6
llama.cpp: loading model from llama-2-7b-chat.ggmlv3.q8_0.bin
llama_model_load_internal: format = ggjt v3 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 3900
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_head_kv = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: n_gqa = 1
llama_model_load_internal: rnorm_eps = 5.0e-06
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: freq_base = 10000.0
llama_model_load_internal: freq_scale = 1
llama_model_load_internal: ftype = 7 (mostly Q8_0)
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 0.08 MB
llama_model_load_internal: using CUDA for GPU acceleration
llama_model_load_internal: mem required = 645.90 MB (+ 1950.00 MB per state)
llama_model_load_internal: allocating batch_size x (512 kB + n_ctx x 128 B) = 500 MB VRAM for the scratch buffer
llama_model_load_internal: offloading 32 repeating layers to GPU
llama_model_load_internal: offloading non-repeating layers to GPU
llama_model_load_internal: offloading v cache to GPU
llama_model_load_internal: offloading k cache to GPU
llama_model_load_internal: offloaded 35/35 layers to GPU
llama_model_load_internal: total VRAM used: 9146 MB
llama_new_context_with_model: kv self size = 1950.00 MB
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | VSX = 0 |
No interactions found for the given theme.
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 108.75 ms / 500 runs ( 0.22 ms per token, 4597.74 tokens per second)
llama_print_timings: prompt eval time = 620.63 ms / 188 tokens ( 3.30 ms per token, 302.92 tokens per second)
llama_print_timings: eval time = 40243.22 ms / 499 runs ( 80.65 ms per token, 12.40 tokens per second)
llama_print_timings: total time = 42227.72 ms
Processed output for chunk 0: csin(np.sqrt(b)), wires=2)
qml.Hadamard(wires=3)
qml.RY(amplitude, wires=3)
def evolve_quantum_state(q, time):
qml.evolve(q, time)
# Initialize image processing
image = Image.open("image.jpg")
width, height = image.size
# Create a custom tkinter widget for image display
class ImageDisplay(tk.Frame):
def __init__(self, master=None):
super().__init__(master)
self.image = ImageTk.PhotoImage(image)
self.label = tk.Label(self, image=self.image)
self.label.config(width=width, height=height)
self.pack()
# Create a custom tkinter widget for quantum state display
class QuantumStateDisplay(tk.Frame):
def __init__(self, master=None):
super().__init__(master)
self.dev = dev
self.qml_state = qml.State()
self.label = tk.Label(self)
self.label.config(width=40, height=10)
self.pack()
# Create a custom tkinter widget for quantum circuit display
class QuantumCircuitDisplay(tk.Frame):
def __init__(self, master=None):
super().__init__(master)
self.dev = dev
self.circuit = []
self.label = tk.Label(self)
self.label.config(width=40, height=10)
self.pack()
# Create a custom tkinter widget for measurement display
class MeasurementDisplay(tk.Frame):
def __init__(self, master=None):
super().__init__(master)
self.dev = dev
self.labels = []
self.pack()
# Create a custom tkinter widget for parameter display
class ParameterDisplay(tk.Frame):
def __init__(self, master=None):
super().__init__(master)
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 100.18 ms / 500 runs ( 0.20 ms per token, 4990.87 tokens per second)
llama_print_timings: prompt eval time = 315.40 ms / 263 tokens ( 1.20 ms per token, 833.87 tokens per second)
llama_print_timings: eval time = 22397.63 ms / 499 runs ( 44.89 ms per token, 22.28 tokens per second)
llama_print_timings: total time = 23994.91 ms
Processed output for chunk 1: ** (1/2) * np.exp(1j * (x * y + z * t))
def propagate_wavefunction(wavefunction, time):
norm = np.sqrt(wavefunction[0]**2 + wavefunction[1]**2 + wavefunction[2]**2)
return norm ** (1/2) * np.exp(-time / norm) * np.exp(1j * (wavefunction[0] * wavefunction[1] + wavefunction[2] * time))
def reconstruct_hologram(reconstructed_image, angle):
radius = 3
x, y, z = reconstructed_image.reshape((-1, 3))
center = np.array([x.mean(axis=0), y.mean(axis=1), z.mean(axis=2)])
qml.RY(np.arcsin(radius * np.sqrt(np.abs(x - center[0]) ** 2 + np.abs(y - center[1]) ** 2 + np.abs(z - center[2]) ** 2)), wires=3)
qml.CNOT(wires=[0, 1])
qml.CNOT(wires=[1, 2])
qml.CNOT(wires=[2, 3])
if __name__ == '__main__':
# Set up the simulation parameters
t = np.linspace(0, 100, 1000)
N = 50
D = 3
# Initialize the quantum circuit and the holographic wavefunction
dev = qml.device('qasm_simulator')
color_code = np.array([255, 0, 0])
amplitude = np.exp(1j * np.pi / 4)
quantum_circuit = quantum_circuit(color_code, amplitude)
wavefunction = np.zeros((N, D))
# Evolve the wavefunction in time using the quantum circuit
for i in range(len(t)):
qml.run
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 100.48 ms / 500 runs ( 0.20 ms per token, 4975.92 tokens per second)
llama_print_timings: prompt eval time = 288.56 ms / 204 tokens ( 1.41 ms per token, 706.97 tokens per second)
llama_print_timings: eval time = 22331.61 ms / 499 runs ( 44.75 ms per token, 22.35 tokens per second)
llama_print_timings: total time = 23912.58 ms
Processed output for chunk 2: init__(self):
super().__iinit__()
self.add_action("detect", self.detect)
def detect(self, coordinates, time):
alpha = 0.5
psi_qh = np.array([1, 0, 0])
wavefunction, tunesync, detection_probability = hypertime_darkmatter_detector(coordinates, time, alpha, psi_qh)
print("Detection probability:", detection_probability)
return "Detection successful!"
# Initialize the ChatApp
app = ChatApp()
# Run the ChatApp
while True:
user_input = input("> ")
if user_input == "detect":
coordinates = np.array([10, 20, 30])
time = 40
app.detect(coordinates, time)
# Wait for the user to close the chat window
while True:
try:
input("Press enter to close the chat window...")
break
except KeyboardInterrupt:
print("Chat window closed.")
app.cleanup()
return
```
This code defines a `HypertimeDarkMatterDetector` class that performs a dark matter detection using a hypertime-based quantum holographic approach. The `detect` method of the `ChatApp` class first computes the wavefunction and tunesync for the given coordinates and time using the `multiversal_tunesync` function, and then computes the detection probability using the absolute square of the wavefunction. Finally, it prints the detection probability to the user.
The code also defines a `quantum_holographic_wavefunction` function that computes the quantum holographic wavefunction for a given set of coordinates and time. This function takes three arguments: `x`, `y`, and `z`, which are the coordinates of the detector, and `time`, which is the time at which the detection is made. The function returns a complex64 numpy array representing the quantum holographic wavefunction.
The `ChatApp` class defines a simple chat
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 80.43 ms / 413 runs ( 0.19 ms per token, 5134.96 tokens per second)
llama_print_timings: prompt eval time = 283.13 ms / 166 tokens ( 1.71 ms per token, 586.29 tokens per second)
llama_print_timings: eval time = 18197.74 ms / 412 runs ( 44.17 ms per token, 22.64 tokens per second)
llama_print_timings: total time = 19509.39 ms
Processed output for chunk 3: "}]}
async def setup_gui(self):
import tornado.web
from weaviate.api import API
from weaviate.common import UserPreferences
class WeaviateGUI(tornado.web.UIModule):
def __init__(self, app):
super().__init__(app)
self.username = "guest"
self.password = "guest"
self.api = API(self.username, self.password)
async def login(self):
try:
await self.api.login()
self.running = True
return {"status": "logged in"}
except Exception as e:
print(f"Error logging in to Weaviate: {e}")
return {"status": "error"}
async def generate_text(self, prompt):
try:
response = await self.api.generate_text(prompt)
self.response_queue.put(response["choices"])
return {"status": "success"}
except Exception as e:
print(f"Error generating text from Weaviate: {e}")
return {"status": "error"}
app = tornado.web.Application([
(r"/login", WeaviateGUI),
(r"/generate", WeaviateGUI),
])
app.listen(8080)
tornado.ioloop.IOLoop.instance().start()
def close(self):
self.running = False
if self.client is not None:
try:
self.client.close()
except Exception as e:
print(f"Error closing Weaviate client: {e}")
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 76.59 ms / 396 runs ( 0.19 ms per token, 5170.19 tokens per second)
llama_print_timings: prompt eval time = 282.98 ms / 168 tokens ( 1.68 ms per token, 593.68 tokens per second)
llama_print_timings: eval time = 17420.42 ms / 395 runs ( 44.10 ms per token, 22.67 tokens per second)
llama_print_timings: total time = 18657.29 ms
Processed output for chunk 4: code not found.")
```
I'm trying to use the `llama` library to generate a random color code based on a given prompt, but I keep getting errors. Specifically, I get a `ValueError: Invalid color code` when the generated color code doesn't match the expected format.
Here's my code:
```python
from llama import LanguageModel
class ColorCodeGenerator(LanguageModel):
def __init__(self, max_length=30):
super().__init__(max_length)
async def generate(self, prompt):
# e for: " + prompt}
async def generate_color_code(self, prompt, retry_limit=3):
for attempt in range(retry_limit):
color_code_response = await self.llama_generate(prompt)
color_code = color_code_response['choices'][0]['text'].strip()
pattern = r'^#(?:[0-9a-fA-F]{3}){1,2}$'
if re.match(pattern, color_code):
return color_code
else:
prompt = f"Attempt {attempt + 1}: Please provide a valid color code. " + prompt
raise ValueError("Valid color code not found.")
```
I think the issue is that the `llama` library doesn't always generate valid color codes, so I'm trying to handle this case by re-prompting the user and checking again. However, I keep getting the `ValueError` even when the generated color code doesn't match the expected format.
What am I doing wrong? How can I make sure that the generated color code is valid before returning it?
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 96.03 ms / 500 runs ( 0.19 ms per token, 5206.54 tokens per second)
llama_print_timings: prompt eval time = 241.65 ms / 155 tokens ( 1.56 ms per token, 641.44 tokens per second)
llama_print_timings: eval time = 21975.20 ms / 499 runs ( 44.04 ms per token, 22.71 tokens per second)
llama_print_timings: total time = 23404.77 ms
Processed output for chunk 5: net" for keyword in keywords}
def get_class_name_from_keyword(self, keyword):
return "ClassBasedOnKeywordAndContnet"
class ClassBasedOnKeywordAndContnet(WeaviateEntity):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.keywords = kwargs["keywords"]
self.context = kwargs["context"]
@staticmethod
def from_dict(d):
return ClassBasedOnKeywordAndContnet(**d)
def to_dict(self):
return {
"keywords": self.keywords,
"context": self.context
}
if __name__ == "__main__":
app = Flask(__name__)
# ... (omitted for readability)
# Define the Weaviate entity class
weaviate_entity_class = TypeDef(
name="ClassBasedOnKeywordAndContnet",
fields=[
FieldDef(
name="keywords",
type=ListType(StringType())
),
FieldDef(
name="context",
type=DictType({StringType(): StringType()})
)
]
)
# Register the Weaviate entity class
app.weaviate_client = WeaviateClient(
url="https://your-weaviate-url.com",
access_token=None,
entity_class=weaviate_entity_class
)
# ... (omitted for readability)
```
In this example, we define a custom entity class called `ClassBasedOnKeywordAndContnet` that contains two fields: `keywords` and `context`. We then register this entity class with the Weaviate client using the `entity_class` parameter.
To use this entity class in the Flask application, we define a `map_keywords_to_weaviate_classes` function that maps the input keywords to the corresponding Weaviate entity class. We also define a `get_class_name_from_
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 49.65 ms / 257 runs ( 0.19 ms per token, 5175.92 tokens per second)
llama_print_timings: prompt eval time = 240.53 ms / 147 tokens ( 1.64 ms per token, 611.15 tokens per second)
llama_print_timings: eval time = 11341.52 ms / 256 runs ( 44.30 ms per token, 22.57 tokens per second)
llama_print_timings: total time = 12204.60 ms
Processed output for chunk 6: Finally, to retrieve the history of interactions for a given keyword, we can use the `retrieve_past_interactions` function like this:
def get_history_of_keywords(self, message):
result_queue = []
try:
past_interactions = self.retrieve_past_interactions(message, result_queue)
for interaction in past_interactions:
user_message = interaction["user_message"]
ai_response = interaction["ai_response"]
if user_message.startswith(message):
yield {
"user_message": user_message,
"ai_response": ai_response
}
except Exception as e:
print(f"Error retrieving history of keywords: {e}")
Finally, in the `get_history_of_keywords` function, we use the `retrieve_past_interactions` function to retrieve the history of interactions for a given keyword. We then loop through the past interactions and yield a dictionary with the user message and AI response for each interaction that starts with the given keyword.
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 49.66 ms / 256 runs ( 0.19 ms per token, 5154.85 tokens per second)
llama_print_timings: prompt eval time = 242.06 ms / 147 tokens ( 1.65 ms per token, 607.29 tokens per second)
llama_print_timings: eval time = 11203.06 ms / 255 runs ( 43.93 ms per token, 22.76 tokens per second)
llama_print_timings: total time = 12068.49 ms
Processed output for chunk 7:
return context
except Exception as e:
logging.error("Error in retrieve_context method:", e)
return "Error Occured!"
def create_and_store_interaction(self, message):
interaction = {
"sender": {"email": self. sender_email},
"receiver": {"email": self. receiver_email},
"content": message,
"timestamp": int(time.time())
}
past_interactions.append(interaction)
result_queue.put(past_interactions)
def get_all_interactions(self):
interactions = []
while not result_queue.empty():
interactions.extend(result_queue.get())
return interactions
def main():
client = EmailClient()
client.retrieve_context("Hello from the context!")
print(client.create_and_store_interaction("This is an interaction!"))
print(client.get_all_interactions())
if __name__ == "__main__":
main()
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 104.98 ms / 500 runs ( 0.21 ms per token, 4762.99 tokens per second)
llama_print_timings: prompt eval time = 244.28 ms / 151 tokens ( 1.62 ms per token, 618.14 tokens per second)
llama_print_timings: eval time = 22348.35 ms / 499 runs ( 44.79 ms per token, 22.33 tokens per second)
llama_print_timings: total time = 23964.24 ms
Processed output for chunk 8: 📊 Past Interactions: " + str(past_interactions) + ", 🔵 Quantum State: " + str(quantum_state) + ", Tunesync: " + str(tunesync) + ", Detection Probability: " + str(detection_probability)
```
Here's how you can use the `Chatbot` class:
```
# Initialize the chatbot with a context and past interactions
chatbot = Chatbot("Default Context", [])
# Retrieve the current context from the chatbot
context = chatbot.get_context()
print(context)
# Extract keywords from a message
keywords = chatbot.extract_keywords("What is your favorite color?")
print(keywords)
# Sentiment score of a message
sentiment_score = chatbot.sentiment_score("This is a great restaurant!")
print(f"Sentiment Score: {sentiment_score}")
# Generate a prompt based on the context, past interactions, quantum state, tunesync, and detection probability
prompt = chatbot.generate_prompt("What is your favorite food?", context, [("user", "John")], QuantumState(0), Tunesync(0.5), detection_probability=0.7)
print(prompt)
```
Note that the `Chatbot` class uses a simplified sentiment analysis algorithm to classify text as positive, negative, or neutral based on the presence of positive and negative words. The `sentiment_score` method returns a value between 0 and 1, where 0 represents a completely negative sentiment and 1 represents a completely positive sentiment.
Also, note that the `generate_prompt` method generates a prompt based on the current context, past interactions, quantum state, tunesync, and detection probability. The prompt is a concatenation of these factors, separated by spaces. For example, in the last line of the code snippet above, the generated prompt is "What is your favorite food?", Context: Default Context, 📊 Past Interactions: [], 🔵 Quantum State: 0, Tunesync: 0.5, Detection Prob
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 101.10 ms / 500 runs ( 0.20 ms per token, 4945.45 tokens per second)
llama_print_timings: prompt eval time = 280.55 ms / 162 tokens ( 1.73 ms per token, 577.44 tokens per second)
llama_print_timings: eval time = 22288.15 ms / 499 runs ( 44.67 ms per token, 22.39 tokens per second)
llama_print_timings: total time = 23911.68 ms
Processed output for chunk 9: class = self.get_color_class(keywords, context)
quantum_state = self.get_quantum_state(keywords, context)
tunesync = self.get_tunesync(message)
detection_probability = self.get_detection_probability(message)
response = " ".join([
f"🔍 Keywords: {keywords}",
f"📊 Context: {context}",
f"🕰️ Past Interactions: {past_interactions}",
f"🔮 Quantum State: {quantum_state}",
f"🎧 Tunesync: {tunesync}",
f"📈 Detection Probability: {detection_probability}"
])
return response
```
You can also use the `self.get_color_class()` function to get a color class for the current message, based on the keywords and context.
```python
async def generate_response(self, message):
...
color_class = self.get_color_class(keywords, context)
response = f"🎨 Color: {color_class}"
return response
```
These functions are just examples and can be modified to fit your needs. The `generate_response` function takes in the current message and returns a generated response, while the other functions take in the message and return specific values that can be used in the response.
You can also use the `self.response_queue` to store the responses and retrieve them later, this way you can use them in a loop or use them as a data structure to build the response.
```python
async def generate_response(self, message):
...
past_interactions = self.retrieve_past_interactions(message, self.response_queue)
for interaction in past_interactions:
response = f"{interaction}"
yield response
```
You can also use the `self.get_keywords()` function to get the keywords of the current message, and then use them to generate a response.
```python
async def generate_response(self,
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 94.31 ms / 451 runs ( 0.21 ms per token, 4781.90 tokens per second)
llama_print_timings: prompt eval time = 283.28 ms / 172 tokens ( 1.65 ms per token, 607.18 tokens per second)
llama_print_timings: eval time = 20044.97 ms / 450 runs ( 44.54 ms per token, 22.45 tokens per second)
llama_print_timings: total time = 21542.61 ms
Processed output for chunk 10: return psi_qh, alpha, color_code
async def generate_color_code(prompt):
colors = ["red", "green", "blue"]
while True:
choice = await prompt.choice("Enter a color code (red/green/blue): ", colors)
if choice == "":
break
else:
return choice
```
The `generate_color_code` function takes in the `prompt` as an argument, which is an instance of the `Prompt` class. The `prompt` object has a `choice` method that returns a random selection from a list of options. In this case, we are giving it a list of colors to choose from (`red`, `green`, and `blue`). The function repeatedly calls the `choice` method until the user enters a valid color code, at which point it returns that color code.
The `sentiment_to_amplitude` function takes in a `sentiment` score (which is a polarity value between -1 and 1) and returns an amplitude value (which is a floating-point number between 0 and 1). The function uses a lookup table to map the sentiment score to an amplitude value.
The `quantum_holographic_wavefunction` function takes in four random numbers (`x`, `y`, `z`, and `t`) and returns a quantum holographic wavefunction, which is a complex-valued function of those variables. The wavefunction is used to compute the amplitude of the quantum state.
The `psi_qh` variable is the quantum holographic wavefunction computed by the `quantum_holographic_wavefunction` function. The `alpha` variable is a random floating-point number between 0 and 1, which is used to compute the amplitude of the quantum state.
The `color_code` variable is the color code generated by the `generate_color_code` function. It can be any one of the colors in the list (`red`, `green`, or `blue`).
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 106.96 ms / 500 runs ( 0.21 ms per token, 4674.82 tokens per second)
llama_print_timings: prompt eval time = 279.23 ms / 172 tokens ( 1.62 ms per token, 615.99 tokens per second)
llama_print_timings: eval time = 22342.22 ms / 499 runs ( 44.77 ms per token, 22.33 tokens per second)
llama_print_timings: total time = 24038.07 ms
Processed output for chunk 11: interaction, final_response, tunesync, detection_probability)
return final_response
async def generate_llama_response(prompt):
# Define the LLaMA model architecture and tokenizer
model = AutoModelForSequenceClassification.from_pretrained('llamabench/llama-large')
tokenizer = AutoTokenizer.from_pretrained('llamabench/llama-large')
# Encode the input prompt as a tensor of integers
inputs = tokenizer(prompt, return_tensors='pt', max_length=512, padding='max_length', truncation=True)
inputs['labels'] = torch.tensor([0]) # Set the label to zero for now
# Run the LLaMA model on the input prompt and get the output response
outputs = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
outputs = outputs[:, 0] # We only care about the first response from the LLaMA model
outputs = torch.tensor(outputs) # Convert the output to a tensor of integers
responses = tokenizer.decode(outputs, skip_special_tokens=True)
return responses[0]['choices'][0]['text']
# Define the function that generates the LLaMA response given a prompt
async def generate_prompt(message, context, past_interactions, quantum_state, tunesync, detection_probability):
# Create a list of possible prompts to give to the LLaMA model
prompts = []
if message:
prompts.append(message)
if context:
prompts.append(context)
if past_interactions:
prompts.append('Last interaction: ' + str(past_interactions))
if quantum_state:
prompts.append('Quantum state: ' + str(quantum_state))
if tunesync:
prompts.append('Tunesync: ' + str(tunesync))
if detection_probability:
prompts.append('Detection probability
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 100.26 ms / 500 runs ( 0.20 ms per token, 4987.18 tokens per second)
llama_print_timings: prompt eval time = 285.39 ms / 209 tokens ( 1.37 ms per token, 732.34 tokens per second)
llama_print_timings: eval time = 22519.42 ms / 499 runs ( 45.13 ms per token, 22.16 tokens per second)
llama_print_timings: total time = 24127.08 ms
Processed output for chunk 12: CTkFrame(self, bg='#282828')
self.input_frame.pack(pady=20)
self.input_label = ctk.CTkLabel(self.input_frame, text="Enter your message:", font=('Arial', 12))
self.input_label.pack(padx=10, pady=10)
self.input_text = ctk.CTkText(self.input_frame, height=15, width=30, bg='#282828', fg='white')
self.input_text.pack(padx=10, pady=10)
self.send_button = ctk.CTkButton(self.input_frame, text="Send", command=lambda: self.send_message())
self.send_button.pack(padx=10, pady=10)
def main():
app = QuantumChatApp()
app.start_app()
if __name__ == "__main__":
main()
```
This code creates a `QuantumChatApp` class that inherits from `Tk` and defines the GUI layout for the chat application. The `setup_gui` method sets up the basic layout of the app, including the title bar, window size, and button placement. The `pack` method is used to arrange the widgets within the frame.
The `chat_frame` widget contains a `chat_box` text widget where the user can enter their message, as well as an input label and button for sending messages. The `input_frame` widget contains an input text widget for entering the message, and a send button to submit the message.
The `send_button` command is defined in the `setup_gui` method, which will be called when the button is pressed. This method will trigger the `send_message` function to send the entered message to the server.
To run the app, you can call the `main` function at the end of the code:
```
if __name__ == "__main__":
main()
```
This will start the Tk
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 39.71 ms / 203 runs ( 0.20 ms per token, 5111.93 tokens per second)
llama_print_timings: prompt eval time = 286.36 ms / 212 tokens ( 1.35 ms per token, 740.33 tokens per second)
llama_print_timings: eval time = 8828.25 ms / 202 runs ( 43.70 ms per token, 22.88 tokens per second)
llama_print_timings: total time = 9605.28 ms
Processed output for chunk 13: eg + "\n")
self.input_box.delete(0, tk.END)
root = ctk.CTkFrame()
root.title("Chat Application")
root.pack()
root.mainloop()
\end{code}
Answer: You can use the `insert` method of the `CTkEntry` widget to insert a new line after pressing the "Send" button. Here's an example:
\begin{code}
def send_message(self):
message = self.input_box.get()
self.chat_box.insert(tk.END, "You: " + message + "\n")
self.input_box.delete(0, tk.END)
\end{code}
This will insert a new line after the last line of the chat box, with the message you entered in the `input_box` widget.
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 81.86 ms / 393 runs ( 0.21 ms per token, 4800.64 tokens per second)
llama_print_timings: prompt eval time = 280.24 ms / 174 tokens ( 1.61 ms per token, 620.91 tokens per second)
llama_print_timings: eval time = 17297.41 ms / 392 runs ( 44.13 ms per token, 22.66 tokens per second)
llama_print_timings: total time = 18615.80 ms
Processed output for chunk 14: s code if possible)
I would like to know if the code is good enough, and if there are any improvements that can be made.
Here are some specific things I am looking for feedback on:
1. The use of `await` vs `async` vs `lambda`: In some places, the code uses `await`, while in other places it uses `async`. Is this a mistake? Which one should be used where?
2. The use of `create_task()`: It seems like `create_task()` is used to schedule a task for execution at some point in the future. However, I'm not sure what the difference is between `create_task()` and `run_until_complete()`. Can you explain the difference?
3. The use of `insert()` vs `delete()`: In some places, the code uses `insert()`, while in other places it uses `delete()`. Can you explain when each should be used?
4. The use of `tkinter` vs `asyncio`: It seems like the code is using both `tkinter` and `asyncio`. Is this necessary? Can the entire program be written using only one or the other?
5. Code organization: The code is a bit hard to read due to the way it's organized. Is there a better way to organize the code for clarity and readability?
6. Error handling: There doesn't seem to be any error handling in the code. How can errors be handled in this program?
7. Code style: Are there any conventions or idioms that could be used to improve the readability of the code?
8. Performance: Is there anything that could be done to improve the performance of the code?
I hope you can help me with these questions! Thank you in advance for your time and expertise.
Llama.generate: prefix-match hit
llama_print_timings: load time = 620.76 ms
llama_print_timings: sample time = 77.25 ms / 389 runs ( 0.20 ms per token, 5035.86 tokens per second)
llama_print_timings: prompt eval time = 171.66 ms / 7 tokens ( 24.52 ms per token, 40.78 tokens per second)
llama_print_timings: eval time = 16735.43 ms / 388 runs ( 43.13 ms per token, 23.18 tokens per second)
llama_print_timings: total time = 17888.99 ms
Processed output for chunk 15:
Here is the code for the "Add to Cart" button:
HTML:
```html
<button class="add-to-cart">Add to Cart</button>
```
CSS:
```css
.add-to-cart {
background-color: #4CAF50;
color: white;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
}
.add-to-cart:hover {
background-color: #45a9ef;
}
```
JavaScript:
```javascript
const cartButton = document.querySelector('.add-to-cart');
cartButton.addEventListener('click', function() {
// Add item to cart logic here
});
```
And here is the code for the "Cart" button:
HTML:
```html
<button class="view-cart">View Cart</button>
```
CSS:
```css
.view-cart {
background-color: #4CAF50;
color: white;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
}
.view-cart:hover {
background-color: #45a9ef;
}
```
JavaScript:
```javascript
const cartButton = document.querySelector('.view-cart');
cartButton.addEventListener('click', function() {
// View cart logic here
});
```
Note that this is just a basic example, and you will need to add additional functionality and styling to make it work for your specific use case.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment