Skip to content

Instantly share code, notes, and snippets.

@graylan0
Last active November 30, 2023 19:59
Show Gist options
  • Save graylan0/5436fe52afb616cde4caee5d1e20ae51 to your computer and use it in GitHub Desktop.
Save graylan0/5436fe52afb616cde4caee5d1e20ae51 to your computer and use it in GitHub Desktop.
import tkinter as tk
import threading
import os
import aiosqlite
import logging
import numpy as np
import base64
import queue
import uuid
import customtkinter
import requests
from customtkinter import CTkImage
import io
import sys
import random
import asyncio
import weaviate
from concurrent.futures import ThreadPoolExecutor
from summa import summarizer
from textblob import TextBlob
from weaviate.util import generate_uuid5
from PIL import Image, ImageTk
from llama_cpp import Llama
from nltk import pos_tag, word_tokenize
from nltk.corpus import wordnet as wn
import nltk
def download_nltk_data():
try:
# Download specific datasets
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
# Add any other datasets you need
print("NLTK Data downloaded successfully.")
except Exception as e:
print(f"Error downloading NLTK data: {e}")
q = queue.Queue()
DB_NAME = "story_generator.db"
logger = logging.getLogger(__name__)
WEAVIATE_ENDPOINT = "https://upward-enough-rabbit.ngrok-free.app" # Replace with your Weaviate instance URL
WEAVIATE_QUERY_PATH = "/v1/graphql"
client = weaviate.Client(
url="https://upward-enough-rabbit.ngrok-free.app",
)
weaviate_client = weaviate.Client(url="https://upward-enough-rabbit.ngrok-free.app")
async def init_db():
try:
async with aiosqlite.connect(DB_NAME) as db:
await db.execute("""
CREATE TABLE IF NOT EXISTS responses (
id INTEGER PRIMARY KEY AUTOINCREMENT,
trideque_point INT,
response TEXT,
response_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
user_id INT
)
""")
await db.execute("""
CREATE TABLE IF NOT EXISTS context (
id INTEGER PRIMARY KEY AUTOINCREMENT,
trideque_point INT,
summarization_context TEXT,
full_text TEXT
)
""")
await db.execute("""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
relationship_state TEXT
)
""")
await db.commit()
except Exception as e:
logger.error(f"Error initializing database: {e}")
llm = Llama(
model_path="llama-2-7b-chat.ggmlv3.q8_0.bin",
n_gpu_layers=-1,
n_ctx=3900,
)
def llama_generate(prompt, max_tokens=3999, chunk_size=1250, weaviate_client=None):
try:
def find_max_overlap(chunk, next_chunk):
max_overlap = min(len(chunk), 400)
for overlap in range(max_overlap, 0, -1):
if chunk.endswith(next_chunk[:overlap]):
return overlap
return 0
def determine_token(chunk):
# Analyze the chunk to determine the token
words = word_tokenize(chunk)
tagged_words = pos_tag(words)
verbs = [word for word, tag in tagged_words if tag.startswith('VB')]
# Use verbs and active words to determine the token
if verbs:
return "[action]"
else:
return "[attention]"
def fetch_relevant_info(chunk, weaviate_client):
# Function to truncate text to a specified number of words
def truncate_text(text, max_words=25):
words = text.split()
return ' '.join(words[:max_words])
# Fetch relevant information from Weaviate
if weaviate_client:
query = f"""
{{
Get {{
InteractionHistory(nearText: {{
concepts: ["{chunk}"],
certainty: 0.7
}}) {{
user_message
ai_response
.with_limit(1)
}}
}}
}}
"""
response = weaviate_client.query.raw(query)
# Extract and truncate relevant information
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data'] ['Get']:
interaction = response['data']['Get']['InteractionHistory'][0]
user_message = truncate_text(interaction['user_message'])
ai_response = truncate_text(interaction['ai_response'])
return f"{user_message} {ai_response}"
else:
return ""
return ""
def tokenize_and_generate(chunk, token):
inputs = llm(f"[{token}] {chunk}", max_tokens=min(max_tokens, chunk_size))
if not isinstance(inputs, dict):
logger.error(f"Output from Llama is not a dictionary: {type(inputs)}")
return None
choices = inputs.get('choices', [])
if not choices or not isinstance(choices[0], dict):
logger.error(f"No valid choices in Llama output")
return None
output = choices[0].get('text', '')
if not output:
logger.error(f"No text found in Llama output")
return None
return output
prompt_chunks = [prompt[i:i + chunk_size] for i in range(0, len(prompt), chunk_size)]
responses = []
last_output = ""
for i, chunk in enumerate(prompt_chunks):
relevant_info = fetch_relevant_info(chunk, weaviate_client)
combined_chunk = f"{relevant_info} {chunk}"
token = determine_token(combined_chunk)
output = tokenize_and_generate(combined_chunk, token)
if i > 0 and last_output:
overlap = find_max_overlap(last_output, output)
output = output[overlap:]
responses.append(output)
last_output = output
final_response = ''.join(responses)
return final_response
except Exception as e:
logger.error(f"Error in llama_generate: {e}")
return None
def run_async_in_thread(loop, coro_func, *args):
try:
asyncio.set_event_loop(loop)
coro = coro_func(*args)
loop.run_until_complete(coro)
except Exception as e:
logger.error(f"Error in async thread: {e}")
finally:
loop.close()
def truncate_text(self, text, max_length=35):
return text if len(text) <= max_length else text[:max_length] + '...'
class App(customtkinter.CTk):
def __init__(self):
super().__init__()
self.setup_gui()
self.response_queue = queue.Queue()
self.client = weaviate.Client(url="https://upward-enough-rabbit.ngrok-free.app")
self.executor = ThreadPoolExecutor(max_workers=4)
async def retrieve_past_interactions(self, generated_reply, result_queue):
try:
def sync_query():
# Construct the GraphQL query as a string
query = {
"query": f"""
{{
Get {{
InteractionHistory(nearText: {{
concepts: ["{generated_reply}"],
certainty: 0.4
}}) {{
user_message
ai_response
.with_limit(2)
}}
}}
}}
"""
}
# Execute the query and return the response
return self.client.query.raw(query)
# Truncate text function inside the class
def truncate_text(text, max_length=35):
return text if len(text) <= max_length else text[:max_length] + '...'
with ThreadPoolExecutor() as executor:
response = await asyncio.get_event_loop().run_in_executor(executor, sync_query)
# Process the response
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']:
interactions = response['data']['Get']['InteractionHistory']
processed_interactions = []
for interaction in interactions:
truncated_user_message = truncate_text(interaction['user_message'], 100)
truncated_ai_response = truncate_text(interaction['ai_response'], 100)
summarized_interaction = summarizer.summarize(f"{truncated_user_message} {truncated_ai_response}")
sentiment = TextBlob(summarized_interaction).sentiment.polarity
processed_interactions.append({
"user_message": truncated_user_message,
"ai_response": truncated_ai_response,
"summarized_interaction": summarized_interaction,
"sentiment": sentiment
})
result_queue.put(processed_interactions)
else:
logger.error("No interactions found for the given generated reply.")
result_queue.put([])
except Exception as e:
logger.error(f"An error occurred while retrieving interactions: {e}")
result_queue.put([])
def process_response_and_store_in_weaviate(self, user_message, ai_response):
response_blob = TextBlob(ai_response)
keywords = response_blob.noun_phrases
sentiment = response_blob.sentiment.polarity
interaction_object = {
"userMessage": user_message,
"aiResponse": ai_response,
"keywords": list(keywords),
"sentiment": sentiment
}
interaction_uuid = str(uuid.uuid4())
try:
self.client.data_object.create(
data_object=interaction_object,
class_name="InteractionHistory",
uuid=interaction_uuid
)
print(f"Interaction stored in Weaviate with UUID: {interaction_uuid}")
except Exception as e:
print(f"Error storing interaction in Weaviate: {e}")
def __exit__(self, exc_type, exc_value, traceback):
self.executor.shutdown(wait=True)
def create_interaction_history_object(self, user_message, ai_response):
interaction_object = {
"user_message": user_message,
"ai_response": ai_response
}
try:
object_uuid = uuid.uuid4()
self.client.data_object.create(
data_object=interaction_object,
class_name="InteractionHistory",
uuid=object_uuid
)
print(f"Interaction history object created with UUID: {object_uuid}")
except Exception as e:
print(f"Error creating interaction history object in Weaviate: {e}")
def map_keywords_to_weaviate_classes(self, keywords, context):
try:
summarized_context = summarizer.summarize(context)
except Exception as e:
print(f"Error in summarizing context: {e}")
summarized_context = context
try:
sentiment = TextBlob(summarized_context).sentiment
except Exception as e:
print(f"Error in sentiment analysis: {e}")
sentiment = TextBlob("").sentiment
positive_class_mappings = {
"keyword1": "PositiveClassA",
"keyword2": "PositiveClassB",
}
negative_class_mappings = {
"keyword1": "NegativeClassA",
"keyword2": "NegativeClassB",
}
default_mapping = {
"keyword1": "NeutralClassA",
"keyword2": "NeutralClassB",
}
if sentiment.polarity > 0:
mapping = positive_class_mappings
elif sentiment.polarity < 0:
mapping = negative_class_mappings
else:
mapping = default_mapping
mapped_classes = {}
for keyword in keywords:
try:
if keyword in mapping:
mapped_classes[keyword] = mapping[keyword]
except KeyError as e:
print(f"Error in mapping keyword '{keyword}': {e}")
return mapped_classes
def run_async_in_thread(loop, coro_func, message, result_queue):
asyncio.set_event_loop(loop)
coro = coro_func(message, result_queue)
loop.run_until_complete(coro)
def generate_response(self, message):
try:
result_queue = queue.Queue()
loop = asyncio.new_event_loop()
past_interactions_thread = threading.Thread(target=run_async_in_thread, args=(loop, self.retrieve_past_interactions, message, result_queue))
past_interactions_thread.start()
past_interactions_thread.join()
past_interactions = result_queue.get()
past_context = "\n".join([f"User: {interaction['user_message']}\nAI: {interaction['ai_response']}" for interaction in past_interactions])
complete_prompt = f"{past_context}\nUser: {message}"
response = llama_generate(complete_prompt)
if response:
response_text = response
self.response_queue.put({'type': 'text', 'data': response_text})
keywords = self.extract_keywords(message)
mapped_classes = self.map_keywords_to_weaviate_classes(keywords, message) # Assuming the message itself is the context
self.create_interaction_history_object(message, response_text)
else:
logger.error("No response generated by llama_generate")
except Exception as e:
logger.error(f"Error in generate_response: {e}")
def on_submit(self, event=None):
message = self.entry.get().strip()
if message:
# Insert the message into the chat box
self.text_box.insert(tk.END, f"You: {message}\n")
# Clear the input box
self.entry.delete(0, tk.END)
# Ensure the latest message is visible
self.text_box.see(tk.END)
# Continue with other functionalities like generating response
self.executor.submit(self.generate_response, message)
self.executor.submit(self.generate_images, message)
self.after(100, self.process_queue)
def create_object(self, class_name, object_data):
unique_string = f"{object_data['time']}-{object_data['user_message']}-{object_data['ai_response']}"
object_uuid = uuid.uuid5(uuid.NAMESPACE_URL, unique_string).hex
try:
self.client.data_object.create(object_data, object_uuid, class_name)
print(f"Object created with UUID: {object_uuid}")
except Exception as e:
print(f"Error creating object in Weaviate: {e}")
return object_uuid
def process_queue(self):
try:
while True:
response = self.response_queue.get_nowait()
if response['type'] == 'text':
self.text_box.insert(tk.END, f"AI: {response['data']}\n")
elif response['type'] == 'image':
# Update the image label with the new CTkImage
self.image_label.configure(image=response['data'])
self.image_label.image = response['data'] # Keep a reference
self.text_box.see(tk.END)
except queue.Empty:
self.after(100, self.process_queue)
def extract_keywords(self, message):
try:
blob = TextBlob(message)
nouns = blob.noun_phrases
return list(nouns)
except Exception as e:
print(f"Error in extract_keywords: {e}")
return []
def generate_images(self, message):
try:
url = 'http://127.0.0.1:7860/sdapi/v1/txt2img'
payload = {
"prompt": message,
"steps" : 121,
"seed" : random.randrange(sys.maxsize),
"enable_hr": "false",
"denoising_strength": "0.7",
"cfg_scale" : "7",
"width": 366,
"height": 756,
"restore_faces": "true",
}
response = requests.post(url, json=payload)
if response.status_code == 200:
try:
r = response.json()
for i in r['images']:
image = Image.open(io.BytesIO(base64.b64decode(i.split(",",1)[0])))
img_tk = ImageTk.PhotoImage(image)
self.response_queue.put({'type': 'image', 'data': img_tk})
self.image_label.image = img_tk
except ValueError as e:
print("Error processing image data: ", e)
else:
print("Error generating image: ", response.status_code)
except Exception as e:
logger.error(f"Error in generate_images: {e}")
def setup_gui(self):
self.title("OneLoveIPFS AI")
self.geometry(f"{1300}x{980}")
self.grid_columnconfigure(1, weight=1)
self.grid_columnconfigure((2, 3), weight=0)
self.grid_rowconfigure((0, 1, 2), weight=1)
# Sidebar frame setup
self.sidebar_frame = customtkinter.CTkFrame(self, width=440, corner_radius=0)
self.sidebar_frame.grid(row=0, column=0, rowspan=4, sticky="nsew")
# Logo setup
logo_path = os.path.join(os.getcwd(), "logo.png")
logo_img = Image.open(logo_path)
base_width = 140
w_percent = (base_width / float(logo_img.size[0]))
h_size = int((float(logo_img.size[1]) * float(w_percent)))
logo_img = logo_img.resize((base_width, h_size), Image.ANTIALIAS)
logo_photo = ImageTk.PhotoImage(logo_img)
self.logo_label = customtkinter.CTkLabel(self.sidebar_frame, image=logo_photo)
self.logo_label.image = logo_photo
self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10))
# Image label setup for generated images with placeholder text
self.image_label = customtkinter.CTkLabel(self.sidebar_frame)
self.image_label.grid(row=1, column=0, padx=20, pady=10)
# Placeholder image (optional)
placeholder_image = Image.new('RGB', (140, 140), color = (73, 109, 137))
self.placeholder_photo = ImageTk.PhotoImage(placeholder_image)
self.image_label.configure(image=self.placeholder_photo)
self.image_label.image = self.placeholder_photo # Keep a reference
self.text_box = customtkinter.CTkTextbox(self, bg_color="white", text_color="white", border_width=0, height=260, width=50, font=customtkinter.CTkFont(size=19))
self.text_box.grid(row=0, column=1, rowspan=3, columnspan=3, padx=(20, 20), pady=(20, 20), sticky="nsew")
self.entry = customtkinter.CTkEntry(self, placeholder_text="Chat With Llama")
self.entry.grid(row=3, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew")
self.send_button = customtkinter.CTkButton(self, text="Send", command=self.on_submit)
self.send_button.grid(row=3, column=3, padx=(0, 20), pady=(20, 20), sticky="nsew")
self.entry.bind('<Return>', self.on_submit)
if __name__ == "__main__":
try:
download_nltk_data()
app = App()
loop = asyncio.get_event_loop()
loop.run_until_complete(init_db())
app.mainloop()
except Exception as e:
logger.error(f"Application error: {e}")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment