Created
November 25, 2023 13:06
-
-
Save graylan0/603b67c8734fca3e35d3bd14cf16dbb9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tkinter as tk | |
import threading | |
import os | |
import aiosqlite | |
import logging | |
import numpy as np | |
import base64 | |
import queue | |
import uuid | |
import customtkinter | |
import requests | |
import io | |
import sys | |
import random | |
import asyncio | |
import weaviate | |
from concurrent.futures import ThreadPoolExecutor | |
from summa import summarizer | |
from textblob import TextBlob | |
from weaviate.util import generate_uuid5 | |
from PIL import Image, ImageTk | |
from llama_cpp import Llama | |
q = queue.Queue() | |
DB_NAME = "story_generator.db" | |
logger = logging.getLogger(__name__) | |
WEAVIATE_ENDPOINT = "https://" # Replace with your Weaviate instance URL | |
WEAVIATE_QUERY_PATH = "/v1/graphql" | |
client = weaviate.Client( | |
url="https://", | |
) | |
async def init_db(): | |
try: | |
async with aiosqlite.connect(DB_NAME) as db: | |
await db.execute(""" | |
CREATE TABLE IF NOT EXISTS responses ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
trideque_point INT, | |
response TEXT, | |
response_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP, | |
user_id INT | |
) | |
""") | |
await db.execute(""" | |
CREATE TABLE IF NOT EXISTS context ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
trideque_point INT, | |
summarization_context TEXT, | |
full_text TEXT | |
) | |
""") | |
await db.execute(""" | |
CREATE TABLE IF NOT EXISTS users ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
name TEXT, | |
relationship_state TEXT | |
) | |
""") | |
await db.commit() | |
except Exception as e: | |
logger.error(f"Error initializing database: {e}") | |
llm = Llama( | |
model_path="llama-2-7b-chat.ggmlv3.q8_0.bin", | |
n_gpu_layers=-1, | |
n_ctx=3900, | |
) | |
def llama_generate(prompt, max_tokens=2500, chunk_size=500): | |
try: | |
def find_overlap(chunk, next_chunk): | |
max_overlap = min(len(chunk), 300) | |
for overlap in range(max_overlap, 0, -1): | |
if chunk.endswith(next_chunk[:overlap]): | |
return overlap | |
return 0 | |
if not isinstance(prompt, str): | |
raise ValueError("Prompt must be a string") | |
prompt_chunks = [prompt[i:i + chunk_size] for i in range(0, len(prompt), chunk_size)] | |
responses = [] | |
last_output = "" | |
for i, chunk in enumerate(prompt_chunks): | |
output_dict = llm(chunk, max_tokens=min(max_tokens, chunk_size)) | |
if not isinstance(output_dict, dict): | |
logger.error(f"Output from Llama for chunk {i} is not a dictionary: {type(output_dict)}") | |
continue | |
choices = output_dict.get('choices', []) | |
if not choices or not isinstance(choices[0], dict): | |
logger.error(f"No valid choices in Llama output for chunk {i}") | |
continue | |
output = choices[0].get('text', '') | |
if not output: | |
logger.error(f"No text found in Llama output for chunk {i}") | |
continue | |
if i > 0 and last_output: | |
overlap = find_overlap(last_output, output) | |
output = output[overlap:] | |
responses.append(output) | |
last_output = output | |
print(f"Processed output for chunk {i}: {output}") | |
final_response = ''.join(responses) | |
return final_response | |
except Exception as e: | |
logger.error(f"Error in llama_generate: {e}") | |
return None | |
def run_async_in_thread(loop, coro_func, *args): | |
try: | |
asyncio.set_event_loop(loop) | |
coro = coro_func(*args) | |
loop.run_until_complete(coro) | |
except Exception as e: | |
logger.error(f"Error in async thread: {e}") | |
finally: | |
loop.close() | |
class App(customtkinter.CTk): | |
def __init__(self): | |
super().__init__() | |
self.setup_gui() | |
self.response_queue = queue.Queue() | |
self.client = weaviate.Client(url="https://") | |
self.executor = ThreadPoolExecutor(max_workers=4) | |
async def retrieve_past_interactions(self, theme, result_queue): | |
try: | |
def sync_query(): | |
query = { | |
"class": "InteractionHistory", | |
"properties": ["user_message", "ai_response"], | |
"where": { | |
"operator": "GreaterThan", | |
"path": ["certainty"], | |
"valueFloat": 0.7 | |
} | |
} | |
return self.client.query.raw(query).do() | |
with ThreadPoolExecutor() as executor: | |
response = await asyncio.get_event_loop().run_in_executor(executor, sync_query) | |
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']: | |
interactions = response['data']['Get']['InteractionHistory'] | |
processed_interactions = [] | |
for interaction in interactions: | |
user_message = interaction['user_message'] | |
ai_response = interaction['ai_response'] | |
summarized_interaction = summarizer.summarize(f"{user_message} {ai_response}") | |
sentiment = TextBlob(summarized_interaction).sentiment.polarity | |
processed_interactions.append({ | |
"user_message": user_message, | |
"ai_response": ai_response, | |
"summarized_interaction": summarized_interaction, | |
"sentiment": sentiment | |
}) | |
result_queue.put(processed_interactions) | |
else: | |
logger.error("No interactions found for the given theme.") | |
result_queue.put([]) | |
except Exception as e: | |
logger.error(f"An error occurred while retrieving interactions: {e}") | |
result_queue.put([]) | |
def process_response_and_store_in_weaviate(self, user_message, ai_response): | |
response_blob = TextBlob(ai_response) | |
keywords = response_blob.noun_phrases | |
sentiment = response_blob.sentiment.polarity | |
interaction_object = { | |
"userMessage": user_message, | |
"aiResponse": ai_response, | |
"keywords": list(keywords), | |
"sentiment": sentiment | |
} | |
interaction_uuid = str(uuid.uuid4()) | |
try: | |
self.client.data_object.create( | |
data_object=interaction_object, | |
class_name="InteractionHistory", | |
uuid=interaction_uuid | |
) | |
print(f"Interaction stored in Weaviate with UUID: {interaction_uuid}") | |
except Exception as e: | |
print(f"Error storing interaction in Weaviate: {e}") | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.executor.shutdown(wait=True) | |
def create_interaction_history_object(self, user_message, ai_response): | |
interaction_object = { | |
"user_message": user_message, | |
"ai_response": ai_response | |
} | |
try: | |
object_uuid = uuid.uuid4() | |
self.client.data_object.create( | |
data_object=interaction_object, | |
class_name="InteractionHistory", | |
uuid=object_uuid | |
) | |
print(f"Interaction history object created with UUID: {object_uuid}") | |
except Exception as e: | |
print(f"Error creating interaction history object in Weaviate: {e}") | |
def map_keywords_to_weaviate_classes(self, keywords, context): | |
try: | |
summarized_context = summarizer.summarize(context) | |
except Exception as e: | |
print(f"Error in summarizing context: {e}") | |
summarized_context = context | |
try: | |
sentiment = TextBlob(summarized_context).sentiment | |
except Exception as e: | |
print(f"Error in sentiment analysis: {e}") | |
sentiment = TextBlob("").sentiment | |
positive_class_mappings = { | |
"keyword1": "PositiveClassA", | |
"keyword2": "PositiveClassB", | |
} | |
negative_class_mappings = { | |
"keyword1": "NegativeClassA", | |
"keyword2": "NegativeClassB", | |
} | |
default_mapping = { | |
"keyword1": "NeutralClassA", | |
"keyword2": "NeutralClassB", | |
} | |
if sentiment.polarity > 0: | |
mapping = positive_class_mappings | |
elif sentiment.polarity < 0: | |
mapping = negative_class_mappings | |
else: | |
mapping = default_mapping | |
mapped_classes = {} | |
for keyword in keywords: | |
try: | |
if keyword in mapping: | |
mapped_classes[keyword] = mapping[keyword] | |
except KeyError as e: | |
print(f"Error in mapping keyword '{keyword}': {e}") | |
return mapped_classes | |
def run_async_in_thread(loop, coro_func, message, result_queue): | |
asyncio.set_event_loop(loop) | |
coro = coro_func(message, result_queue) | |
loop.run_until_complete(coro) | |
def generate_response(self, message): | |
try: | |
result_queue = queue.Queue() | |
loop = asyncio.new_event_loop() | |
past_interactions_thread = threading.Thread(target=run_async_in_thread, args=(loop, self.retrieve_past_interactions, message, result_queue)) | |
past_interactions_thread.start() | |
past_interactions_thread.join() | |
past_interactions = result_queue.get() | |
past_context = "\n".join([f"User: {interaction['user_message']}\nAI: {interaction['ai_response']}" for interaction in past_interactions]) | |
complete_prompt = f"{past_context}\nUser: {message}" | |
response = llama_generate(complete_prompt) | |
if response: | |
response_text = response | |
self.response_queue.put({'type': 'text', 'data': response_text}) | |
keywords = self.extract_keywords(message) | |
mapped_classes = self.map_keywords_to_weaviate_classes(keywords, message) # Assuming the message itself is the context | |
self.create_interaction_history_object(message, response_text) | |
else: | |
logger.error("No response generated by llama_generate") | |
except Exception as e: | |
logger.error(f"Error in generate_response: {e}") | |
def on_submit(self, event=None): | |
message = self.entry.get().strip() | |
if message: | |
self.text_box.insert(tk.END, f"You: {message}\n") | |
self.entry.delete(0, tk.END) | |
self.text_box.see(tk.END) | |
self.executor.submit(self.generate_response, message) | |
self.executor.submit(self.generate_images, message) | |
self.after(100, self.process_queue) | |
def create_object(self, class_name, object_data): | |
unique_string = f"{object_data['time']}-{object_data['user_message']}-{object_data['ai_response']}" | |
object_uuid = uuid.uuid5(uuid.NAMESPACE_URL, unique_string).hex | |
try: | |
self.client.data_object.create(object_data, object_uuid, class_name) | |
print(f"Object created with UUID: {object_uuid}") | |
except Exception as e: | |
print(f"Error creating object in Weaviate: {e}") | |
return object_uuid | |
def process_queue(self): | |
try: | |
while True: | |
response = self.response_queue.get_nowait() | |
if response['type'] == 'text': | |
self.text_box.insert(tk.END, f"AI: {response['data']}\n") | |
elif response['type'] == 'image': | |
self.image_label.config(image=response['data']) | |
self.image_label.image = response['data'] | |
self.text_box.see(tk.END) | |
except queue.Empty: | |
self.after(100, self.process_queue) | |
def extract_keywords(self, message): | |
blob = TextBlob(message) | |
nouns = blob.noun_phrases | |
return list(nouns) | |
async def retrieve_past_interactions(self, theme, result_queue): | |
try: | |
def sync_query(): | |
return self.client.query.get("interaction_history", ["user_message", "ai_response"]).with_near_text({ | |
"concepts": [theme], | |
"certainty": 0.7 | |
}).do() | |
with ThreadPoolExecutor() as executor: | |
response = await asyncio.get_event_loop().run_in_executor(executor, sync_query) | |
if 'data' in response and 'Get' in response['data'] and 'interaction_history' in response['data']['Get']: | |
interactions = response['data']['Get']['interaction_history'] | |
result_queue.put(interactions) | |
else: | |
logger.error("No interactions found for the given theme.") | |
result_queue.put([]) | |
except Exception as e: | |
logger.error(f"An error occurred while retrieving interactions: {e}") | |
result_queue.put([]) | |
def generate_images(self, message): | |
try: | |
url = 'http://127.0.0.1:7860/sdapi/v1/txt2img' | |
payload = { | |
"prompt": message, | |
"steps" : 50, | |
"seed" : random.randrange(sys.maxsize), | |
"enable_hr": "false", | |
"denoising_strength": "0.7", | |
"cfg_scale" : "7", | |
"width": 1280, | |
"height": 512, | |
"restore_faces": "true", | |
} | |
response = requests.post(url, json=payload) | |
if response.status_code == 200: | |
try: | |
r = response.json() | |
for i in r['images']: | |
image = Image.open(io.BytesIO(base64.b64decode(i.split(",",1)[0]))) | |
img_tk = ImageTk.PhotoImage(image) | |
self.response_queue.put({'type': 'image', 'data': img_tk}) | |
self.image_label.image = img_tk | |
except ValueError as e: | |
print("Error processing image data: ", e) | |
else: | |
print("Error generating image: ", response.status_code) | |
except Exception as e: | |
logger.error(f"Error in generate_images: {e}") | |
def setup_gui(self): | |
self.title("OneLoveIPFS AI") | |
self.geometry(f"{1100}x{580}") | |
self.grid_columnconfigure(1, weight=1) | |
self.grid_columnconfigure((2, 3), weight=0) | |
self.grid_rowconfigure((0, 1, 2), weight=1) | |
self.sidebar_frame = customtkinter.CTkFrame(self, width=140, corner_radius=0) | |
self.sidebar_frame.grid(row=0, column=0, rowspan=4, sticky="nsew") | |
self.sidebar_frame.grid_rowconfigure(4, weight=1) | |
logo_path = os.path.join(os.getcwd(), "logo.png") | |
logo_img = Image.open(logo_path).resize((140, 77)) # Add the .resize() method with the desired dimensions | |
logo_photo = ImageTk.PhotoImage(logo_img) # Convert PIL.Image to tkinter.PhotoImage | |
self.logo_label = tk.Label(self.sidebar_frame, image=logo_photo, bg=self.sidebar_frame["bg"]) # Create a tkinter.Label | |
self.logo_label.image = logo_photo # Keep a reference to the image | |
self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10)) # This is the correct position for the logo_label grid statement | |
self.text_box = customtkinter.CTkTextbox(self, bg_color="white", text_color="white", border_width=0, height=20, width=50, font=customtkinter.CTkFont(size=13)) | |
self.text_box.grid(row=0, column=1, rowspan=3, columnspan=3, padx=(20, 20), pady=(20, 20), sticky="nsew") | |
self.entry = customtkinter.CTkEntry(self, placeholder_text="Chat With Llama") | |
self.entry.grid(row=3, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew") | |
self.send_button = customtkinter.CTkButton(self, text="Send", command=self.on_submit) | |
self.send_button.grid(row=3, column=3, padx=(0, 20), pady=(20, 20), sticky="nsew") | |
self.entry.bind('<Return>', self.on_submit) | |
self.image_label = tk.Label(self) | |
self.image_label.grid(row=4, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew") | |
if __name__ == "__main__": | |
try: | |
app = App() | |
loop = asyncio.get_event_loop() | |
loop.run_until_complete(init_db()) | |
app.mainloop() | |
except Exception as e: | |
logger.error(f"Application error: {e}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment