Created
December 25, 2023 19:41
-
-
Save graylan0/a48796961b4c7ecd85a7876700d43801 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import hashlib | |
import numpy as np | |
import pennylane as qml | |
from datetime import datetime | |
import nltk | |
from textblob import TextBlob | |
from concurrent.futures import ThreadPoolExecutor | |
import time | |
import json | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class QuantumCommunicationNode: | |
def __init__(self, config): | |
self.node_id = config["node_id"] | |
self.entanglement_key = self.generate_entanglement_key(config["entanglement_key"]) | |
self.dev = qml.device('default.qubit', wires=10) | |
self.chunk_size = config.get("chunk_size", 100) | |
self.llama_prompts = config.get("llama_prompts", {}) | |
def generate_entanglement_key(self, key): | |
key_input = f"{self.node_id}-{datetime.now().isoformat()}" | |
return hashlib.sha256(key_input.encode()).hexdigest() | |
@qml.qnode(self.dev) | |
def quantum_entanglement_circuit(self, chunks): | |
for i, chunk in enumerate(chunks): | |
self.prepare_chunk_state(chunk, i) | |
for i in range(len(chunks) - 1): | |
qml.CNOT(wires=[i, i + 1]) | |
return [qml.expval(qml.PauliZ(i)) for i in range(len(chunks))] | |
def prepare_chunk_state(self, chunk, wire): | |
for char in chunk: | |
qml.RY(ord(char) * np.pi / 256, wires=wire) | |
def quantum_entangle_message(self, message): | |
sentiment = self.analyze_sentiment(message) | |
chunks = self.quantum_chunk_message(message, sentiment) | |
quantum_states = self.quantum_entanglement_circuit(chunks) | |
return quantum_states, chunks | |
def analyze_sentiment(self, message): | |
analysis = TextBlob(message) | |
return (analysis.sentiment.polarity + 1) / 2 | |
def quantum_chunk_message(self, message, sentiment): | |
chunk_length = int(self.chunk_size * sentiment) | |
return [message[i:i + chunk_length] for i in range(0, len(message), chunk_length)] | |
def llama2_generate_dynamic_prompt(self, message): | |
base_prompt = self.llama_prompts.get("base_prompt", "") | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
sentiment = self.analyze_sentiment(message) | |
tone = "positive" if sentiment > 0.5 else "neutral" if sentiment > 0 else "negative" | |
dynamic_prompt = f"{base_prompt} [Time: {current_time}] [Tone: {tone}] {message[:550]}" | |
return dynamic_prompt | |
class QuantumNodeIDGenerator: | |
def __init__(self, num_wires=5): | |
self.dev = qml.device('default.qubit', wires=num_wires) | |
@qml.qnode(self.dev) | |
def quantum_circuit(self, inputs): | |
for i in range(len(inputs)): | |
qml.RY(inputs[i], wires=i) | |
for i in range(len(inputs) - 1): | |
qml.CNOT(wires=[i, i + 1]) | |
return [qml.expval(qml.PauliZ(i)) for i in range(len(inputs))] | |
def generate_name(self, seed): | |
hashed_seed = hashlib.sha256(seed.encode()).hexdigest() | |
inputs = np.array([ord(c) for c in hashed_seed[:5]]) | |
quantum_results = self.quantum_circuit(inputs) | |
name = ''.join([chr(int((val + 1) * 128)) for val in quantum_results]) | |
return name | |
class AdvancedTokenizer: | |
def tokenize(self, message): | |
tokens = nltk.word_tokenize(message) | |
tagged_tokens = nltk.pos_tag(tokens) | |
return self.inject_custom_tokens(tagged_tokens) | |
def inject_custom_tokens(self, tagged_tokens, quantum_states): | |
custom_tokens = [] | |
for word, tag in tagged_tokens: | |
if tag.startswith('VB'): | |
custom_tokens.append('[action]') | |
if 'time' in word.lower(): | |
custom_tokens.append('[time]') | |
if 'important' in word.lower(): | |
custom_tokens.append('[important]') | |
custom_tokens.append(word) | |
# Inject quantum entanglement tokens | |
for state in quantum_states: | |
entanglement_token = '[entangled]' if state > 0 else '[not_entangled]' | |
custom_tokens.append(entanglement_token) | |
return custom_tokens | |
class Bot: | |
def __init__(self, name, quantum_generator, config): | |
self.name = name | |
self.quantum_generator = quantum_generator | |
self.tokenizer = AdvancedTokenizer() | |
self.node = QuantumCommunicationNode(config) | |
def generate_node_id(self): | |
seed = f"{self.name}-{datetime.now().isoformat()}" | |
return self.quantum_generator.generate_name(seed) | |
def prepare_message(self, raw_message): | |
tokenized_message = self.tokenizer.tokenize(raw_message) | |
return ' '.join(tokenized_message) | |
def communicate(self, other_bot): | |
try: | |
node_id = self.generate_node_id() | |
raw_message = f"Node {self.name} to {other_bot.name}: {node_id}" | |
quantum_states, chunks = self.node.quantum_entangle_message(raw_message) | |
processed_message = self.tokenizer.tokenize(raw_message) | |
entangled_tokens = self.tokenizer.inject_custom_tokens(processed_message, quantum_states) | |
dynamic_prompt = self.node.llama2_generate_dynamic_prompt(' '.join(entangled_tokens)) | |
logger.info(f"Sending from {self.name} to {other_bot.name}: {dynamic_prompt}") | |
except Exception as e: | |
logger.error(f"Error in bot communication: {e}") | |
def main(): | |
try: | |
with open('config.json', 'r') as file: | |
config = json.load(file) | |
quantum_generator = QuantumNodeIDGenerator() | |
bot1 = Bot("Bot1", quantum_generator, config["node1"]) | |
bot2 = Bot("Bot2", quantum_generator, config["node2"]) | |
max_workers = config.get("max_workers", 2) | |
with ThreadPoolExecutor(max_workers=max_workers) as executor: | |
executor.submit(bot1.communicate, bot2) | |
executor.submit(bot2.communicate, bot1) | |
except Exception as e: | |
logger.error(f"Error in main execution: {e}") | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment