Created
January 30, 2024 01:48
-
-
Save graylan0/b6b0eebdd6356ee740ad5cab93049d51 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tkinter as tk | |
import customtkinter | |
import threading | |
import os | |
import aiosqlite | |
import weaviate | |
import logging | |
import numpy as np | |
import base64 | |
import queue | |
import uuid | |
import requests | |
import io | |
import sys | |
import random | |
import asyncio | |
import re | |
import uvicorn | |
import json | |
from concurrent.futures import ThreadPoolExecutor | |
from PIL import Image, ImageTk | |
from llama_cpp import Llama | |
from os import path | |
from fastapi import FastAPI, HTTPException, Security, Depends | |
from fastapi.security.api_key import APIKeyHeader | |
from pydantic import BaseModel | |
from collections import Counter | |
#from bark import SAMPLE_RATE, generate_audio, preload_models | |
#import sounddevice as sd | |
#from scipy.io.wavfile import write as write_wav | |
from summa import summarizer | |
import nltk | |
from textblob import TextBlob | |
from weaviate.util import generate_uuid5 | |
from nltk import pos_tag, word_tokenize | |
from nltk.corpus import wordnet as wn | |
from datetime import datetime | |
import aiosqlite | |
import uuid | |
import json | |
from elevenlabs import generate, play | |
import asyncio | |
from elevenlabs import set_api_key | |
import weaviate | |
from weaviate.embedded import EmbeddedOptions | |
client = weaviate.Client( | |
embedded_options=EmbeddedOptions() | |
) | |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
os.environ["SUNO_USE_SMALL_MODELS"] = "1" | |
executor = ThreadPoolExecutor(max_workers=5) | |
bundle_dir = path.abspath(path.dirname(__file__)) | |
path_to_config = path.join(bundle_dir, 'config.json') | |
model_path = path.join(bundle_dir, 'llama-2-7b-chat.ggmlv3.q8_0.bin') | |
logo_path = path.join(bundle_dir, 'logo.png') | |
API_KEY_NAME = "access_token" | |
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) | |
def load_config(file_path=path_to_config): | |
with open(file_path, 'r') as file: | |
return json.load(file) | |
q = queue.Queue() | |
logger = logging.getLogger(__name__) | |
config = load_config() | |
ELEVEN_LABS_KEY = config['ELEVEN_LABS_KEY'] | |
set_api_key(ELEVEN_LABS_KEY) | |
DB_NAME = config['DB_NAME'] | |
API_KEY = config['API_KEY'] | |
WEAVIATE_ENDPOINT = config['WEAVIATE_ENDPOINT'] | |
WEAVIATE_QUERY_PATH = config['WEAVIATE_QUERY_PATH'] | |
app = FastAPI() | |
def run_api(): | |
uvicorn.run(app, host="127.0.0.1", port=8000) | |
api_thread = threading.Thread(target=run_api, daemon=True) | |
api_thread.start() | |
API_KEY_NAME = "access_token" | |
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) | |
def generate_uuid_for_weaviate(identifier, namespace=''): | |
if not identifier: | |
raise ValueError("Identifier for UUID generation is empty or None") | |
if not namespace: | |
namespace = str(uuid.uuid4()) | |
try: | |
return generate_uuid5(namespace, identifier) | |
except Exception as e: | |
logger.error(f"Error generating UUID: {e}") | |
raise | |
def is_valid_uuid(uuid_to_test, version=5): | |
try: | |
uuid_obj = uuid.UUID(uuid_to_test, version=version) | |
return str(uuid_obj) == uuid_to_test | |
except ValueError: | |
return False | |
def get_api_key(api_key_header: str = Security(api_key_header)): | |
if api_key_header == API_KEY: | |
return api_key_header | |
else: | |
raise HTTPException(status_code=403, detail="Invalid API Key") | |
def get_current_multiversal_time(): | |
current_time = datetime.now().strftime("%Y-%m-%dT%H:%M:%S") | |
x, y, z, t = 34, 76, 12, 5633 | |
return f"X:{x}, Y:{y}, Z:{z}, T:{t}, Time:{current_time}" | |
async def init_db(): | |
try: | |
async with aiosqlite.connect(DB_NAME) as db: | |
await db.execute(""" | |
CREATE TABLE IF NOT EXISTS local_responses ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
user_id TEXT, | |
response TEXT, | |
response_time TEXT | |
) | |
""") | |
await db.commit() | |
interaction_history_class = { | |
"class": "InteractionHistory", | |
"properties": [ | |
{"name": "user_id", "dataType": ["string"]}, | |
{"name": "response", "dataType": ["string"]}, | |
{"name": "response_time", "dataType": ["string"]} | |
] | |
} | |
existing_classes = client.schema.get()['classes'] | |
if not any(cls['class'] == 'InteractionHistory' for cls in existing_classes): | |
client.schema.create_class(interaction_history_class) | |
except Exception as e: | |
logger.error(f"Error during database initialization: {e}") | |
raise | |
async def save_user_message(user_id, user_input): | |
try: | |
response_time = get_current_multiversal_time() | |
unique_string = f"{user_id}-{user_input}-{response_time}" | |
generated_uuid = generate_uuid_for_weaviate(unique_string) | |
if not is_valid_uuid(generated_uuid): | |
logger.error(f"Invalid UUID generated: {generated_uuid}") | |
return | |
data_object = { | |
"user_id": user_id, | |
"response": user_input, | |
"response_time": response_time | |
} | |
async with aiosqlite.connect(DB_NAME) as db: | |
await db.execute("INSERT INTO local_responses (user_id, response, response_time) VALUES (?, ?, ?)", | |
(user_id, user_input, response_time)) | |
await db.commit() | |
client.data_object.create(data_object, str(generated_uuid), "InteractionHistory") | |
except Exception as e: | |
logger.error(f"Error saving user message: {e}") | |
async def save_bot_response(bot_id, bot_response): | |
try: | |
response_time = get_current_multiversal_time() | |
generated_uuid = str(uuid.uuid4()) | |
data_object = { | |
"user_id": bot_id, | |
"response": bot_response, | |
"response_time": response_time | |
} | |
async with aiosqlite.connect(DB_NAME) as db: | |
await db.execute("INSERT INTO local_responses (user_id, response, response_time) VALUES (?, ?, ?)", | |
(bot_id, bot_response, response_time)) | |
await db.commit() | |
client.data_object.create(data_object, generated_uuid, "InteractionHistory") | |
except Exception as e: | |
logger.error(f"Error saving bot response: {e}") | |
def download_nltk_data(): | |
try: | |
resources = { | |
'tokenizers/punkt': 'punkt', | |
'taggers/averaged_perceptron_tagger': 'averaged_perceptron_tagger' | |
} | |
for path, package in resources.items(): | |
try: | |
nltk.data.find(path) | |
print(f"'{package}' already downloaded.") | |
except LookupError: | |
nltk.download(package) | |
print(f"'{package}' downloaded successfully.") | |
except Exception as e: | |
print(f"Error downloading NLTK data: {e}") | |
class UserInput(BaseModel): | |
message: str | |
@app.post("/process/") | |
async def process_input(user_input: UserInput, api_key: str = Depends(get_api_key)): | |
try: | |
response = llama_generate(user_input.message, client) | |
return {"response": response} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
llm = Llama( | |
model_path=model_path, | |
n_gpu_layers=-1, | |
n_ctx=3900, | |
) | |
def is_code_like(chunk): | |
code_patterns = r'\b(def|class|import|if|else|for|while|return|function|var|let|const|print)\b|[\{\}\(\)=><\+\-\*/]' | |
return bool(re.search(code_patterns, chunk)) | |
def determine_token(chunk, memory, max_words_to_check=500): | |
combined_chunk = f"{memory} {chunk}" | |
if not combined_chunk: | |
return "[attention]" | |
if is_code_like(combined_chunk): | |
return "[code]" | |
words = word_tokenize(combined_chunk)[:max_words_to_check] | |
tagged_words = pos_tag(words) | |
pos_counts = Counter(tag[:2] for _, tag in tagged_words) | |
most_common_pos, _ = pos_counts.most_common(1)[0] | |
if most_common_pos == 'VB': | |
return "[action]" | |
elif most_common_pos == 'NN': | |
return "[subject]" | |
elif most_common_pos in ['JJ', 'RB']: | |
return "[description]" | |
else: | |
return "[general]" | |
def find_max_overlap(chunk, next_chunk): | |
max_overlap = min(len(chunk), 240) | |
return next((overlap for overlap in range(max_overlap, 0, -1) if chunk.endswith(next_chunk[:overlap])), 0) | |
def truncate_text(text, max_words=100): | |
return ' '.join(text.split()[:max_words]) | |
def fetch_relevant_info(chunk, client, user_input): | |
if not user_input: | |
logger.error("User input is None or empty.") | |
return "" | |
summarized_chunk = summarizer.summarize(chunk) | |
query_chunk = summarized_chunk if summarized_chunk else chunk | |
if not query_chunk: | |
logger.error("Query chunk is empty.") | |
return "" | |
query = { | |
"query": { | |
"nearText": { | |
"concepts": [user_input], | |
"certainty": 0.7 | |
} | |
} | |
} | |
try: | |
response = weaviate_client.query.raw(json.dumps(query)) | |
logger.debug(f"Query sent: {json.dumps(query)}") | |
logger.debug(f"Response received: {response}") | |
if response and 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']: | |
interaction = response['data']['Get']['InteractionHistory'][0] | |
return f"{interaction['user_message']} {interaction['ai_response']}" | |
else: | |
logger.error("Weaviate client returned no relevant data for query: " + json.dumps(query)) | |
return "" | |
except Exception as e: | |
logger.error(f"Weaviate query failed: {e}") | |
return "" | |
def llama_generate(prompt, weaviate_client=None, user_input=None): | |
config = load_config() | |
max_tokens = config.get('MAX_TOKENS', 2500) | |
chunk_size = config.get('CHUNK_SIZE', 158) | |
try: | |
prompt_chunks = [prompt[i:i + chunk_size] for i in range(0, len(prompt), chunk_size)] | |
responses = [] | |
last_output = "" | |
memory = "" | |
for i, current_chunk in enumerate(prompt_chunks): | |
relevant_info = fetch_relevant_info(current_chunk, weaviate_client, user_input) | |
combined_chunk = f"{relevant_info} {current_chunk}" | |
token = determine_token(combined_chunk, memory) | |
output = tokenize_and_generate(combined_chunk, token, max_tokens, chunk_size) | |
if output is None: | |
logger.error(f"Failed to generate output for chunk: {combined_chunk}") | |
continue | |
if i > 0 and last_output: | |
overlap = find_max_overlap(last_output, output) | |
output = output[overlap:] | |
memory += output | |
responses.append(output) | |
last_output = output | |
final_response = ''.join(responses) | |
return final_response if final_response else None | |
except Exception as e: | |
logger.error(f"Error in llama_generate: {e}") | |
return None | |
def tokenize_and_generate(chunk, token, max_tokens, chunk_size): | |
try: | |
inputs = llm(f"[{token}] {chunk}", max_tokens=min(max_tokens, chunk_size)) | |
if inputs is None or not isinstance(inputs, dict): | |
logger.error(f"Llama model returned invalid output for input: {chunk}") | |
return None | |
choices = inputs.get('choices', []) | |
if not choices or not isinstance(choices[0], dict): | |
logger.error("No valid choices in Llama output") | |
return None | |
return choices[0].get('text', '') | |
except Exception as e: | |
logger.error(f"Error in tokenize_and_generate: {e}") | |
return None | |
def run_async_in_thread(self, loop, coro_func, user_input, result_queue): | |
try: | |
asyncio.set_event_loop(loop) | |
coro = coro_func(user_input, result_queue) | |
loop.run_until_complete(coro) | |
finally: | |
loop.close() | |
def truncate_text(self, text, max_length=55): | |
try: | |
if not isinstance(text, str): | |
raise ValueError("Input must be a string") | |
return text if len(text) <= max_length else text[:max_length] + '...' | |
except Exception as e: | |
print(f"Error in truncate_text: {e}") | |
return "" | |
def extract_verbs_and_nouns(text): | |
try: | |
if not isinstance(text, str): | |
raise ValueError("Input must be a string") | |
words = word_tokenize(text) | |
tagged_words = pos_tag(words) | |
verbs_and_nouns = [word for word, tag in tagged_words if tag.startswith('VB') or tag.startswith('NN')] | |
return verbs_and_nouns | |
except Exception as e: | |
print(f"Error in extract_verbs_and_nouns: {e}") | |
return [] | |
class App(customtkinter.CTk): | |
def __init__(self, user_identifier): | |
super().__init__() | |
self.user_id = user_identifier | |
self.bot_id = "bot" | |
self.loop = asyncio.get_event_loop() | |
self.setup_gui() | |
self.response_queue = queue.Queue() | |
self.client = weaviate.Client(url=WEAVIATE_ENDPOINT) | |
self.executor = ThreadPoolExecutor(max_workers=4) | |
async def retrieve_past_interactions(self, user_input, result_queue): | |
try: | |
keywords = extract_verbs_and_nouns(user_input) | |
concepts_query = ' '.join(keywords) | |
def fetch_relevant_info(chunk, client): | |
if client: | |
query = f""" | |
{{ | |
Get {{ | |
InteractionHistory(nearText: {{ | |
concepts: ["{chunk}"], | |
certainty: 0.7 | |
}}) {{ | |
user_message | |
ai_response | |
.with_limit(1) | |
}} | |
}} | |
}} | |
""" | |
response = client.query.raw(query) | |
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']: | |
interaction = response['data']['Get']['InteractionHistory'][0] | |
return interaction['user_message'], interaction['ai_response'] | |
else: | |
return "", "" | |
return "", "" | |
user_message, ai_response = fetch_relevant_info(concepts_query, self.client) | |
if user_message and ai_response: | |
summarized_interaction = summarizer.summarize(f"{user_message} {ai_response}") | |
sentiment = TextBlob(summarized_interaction).sentiment.polarity | |
processed_interaction = { | |
"user_message": user_message, | |
"ai_response": ai_response, | |
"summarized_interaction": summarized_interaction, | |
"sentiment": sentiment | |
} | |
result_queue.put([processed_interaction]) | |
else: | |
logger.error("No relevant interactions found for the given user input.") | |
result_queue.put([]) | |
except Exception as e: | |
logger.error(f"An error occurred while retrieving interactions: {e}") | |
result_queue.put([]) | |
def process_response_and_store_in_weaviate(self, user_message, ai_response): | |
response_blob = TextBlob(ai_response) | |
keywords = response_blob.noun_phrases | |
sentiment = response_blob.sentiment.polarity | |
enhanced_keywords = set() | |
for phrase in keywords: | |
enhanced_keywords.update(phrase.split()) | |
interaction_object = { | |
"userMessage": user_message, | |
"aiResponse": ai_response, | |
"keywords": list(enhanced_keywords), | |
"sentiment": sentiment | |
} | |
interaction_uuid = str(uuid.uuid4()) | |
try: | |
self.client.data_object.create( | |
data_object=interaction_object, | |
class_name="InteractionHistory", | |
uuid=interaction_uuid | |
) | |
print(f"Interaction stored in Weaviate with UUID: {interaction_uuid}") | |
except Exception as e: | |
print(f"Error storing interaction in Weaviate: {e}") | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.executor.shutdown(wait=True) | |
def create_interaction_history_object(self, user_message, ai_response): | |
interaction_object = { | |
"user_message": user_message, | |
"ai_response": ai_response | |
} | |
try: | |
object_uuid = uuid.uuid4() | |
self.client.data_object.create( | |
data_object=interaction_object, | |
class_name="InteractionHistory", | |
uuid=object_uuid | |
) | |
print(f"Interaction history object created with UUID: {object_uuid}") | |
except Exception as e: | |
print(f"Error creating interaction history object in Weaviate: {e}") | |
def map_keywords_to_weaviate_classes(self, keywords, context): | |
try: | |
summarized_context = summarizer.summarize(context) | |
except Exception as e: | |
print(f"Error in summarizing context: {e}") | |
summarized_context = context | |
try: | |
sentiment = TextBlob(summarized_context).sentiment | |
except Exception as e: | |
print(f"Error in sentiment analysis: {e}") | |
sentiment = TextBlob("").sentiment | |
positive_class_mappings = { | |
"keyword1": "PositiveClassA", | |
"keyword2": "PositiveClassB", | |
} | |
negative_class_mappings = { | |
"keyword1": "NegativeClassA", | |
"keyword2": "NegativeClassB", | |
} | |
default_mapping = { | |
"keyword1": "NeutralClassA", | |
"keyword2": "NeutralClassB", | |
} | |
if sentiment.polarity > 0: | |
mapping = positive_class_mappings | |
elif sentiment.polarity < 0: | |
mapping = negative_class_mappings | |
else: | |
mapping = default_mapping | |
mapped_classes = {} | |
for keyword in keywords: | |
try: | |
if keyword in mapping: | |
mapped_classes[keyword] = mapping[keyword] | |
except KeyError as e: | |
print(f"Error in mapping keyword '{keyword}': {e}") | |
return mapped_classes | |
async def retrieve_past_interactions(self, user_input, result_queue): | |
try: | |
keywords = extract_verbs_and_nouns(user_input) | |
concepts_query = ' '.join(keywords) | |
query = f""" | |
{{ | |
Get {{ | |
InteractionHistory(nearText: {{ | |
concepts: ["{concepts_query}"], | |
certainty: 0.8 | |
}}) {{ | |
user_message | |
ai_response | |
.with_limit(12) | |
}} | |
}} | |
}} | |
""" | |
response = self.client.query.raw(query) | |
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']: | |
interactions = response['data']['Get']['InteractionHistory'] | |
result_queue.put(interactions) | |
else: | |
result_queue.put([]) | |
except Exception as e: | |
logger.error(f"An error occurred while retrieving interactions: {e}") | |
result_queue.put([]) | |
async def generate_response(self, user_input): | |
try: | |
if not user_input: | |
logger.error("User input is None or empty.") | |
return | |
user_id = self.user_id | |
bot_id = self.bot_id | |
await save_user_message(user_id, user_input) | |
include_past_context = "[pastcontext]" in user_input | |
user_input = user_input.replace("[pastcontext]", "").replace("[/pastcontext]", "") | |
past_context = "" | |
if include_past_context: | |
result_queue = queue.Queue() | |
await self.retrieve_past_interactions(user_input, result_queue) | |
past_interactions = result_queue.get() | |
if past_interactions: | |
past_context_combined = "\n".join( | |
[f"User: {interaction['user_message']}\nAI: {interaction['ai_response']}" | |
for interaction in past_interactions]) | |
past_context = past_context_combined[-1500:] | |
complete_prompt = f"{past_context}\nUser: {user_input}" | |
logger.info(f"Generating response for prompt: {complete_prompt}") | |
response = llama_generate(complete_prompt, self.client) | |
if response: | |
logger.info(f"Generated response: {response}") | |
await save_bot_response(bot_id, response) | |
self.process_generated_response(response) | |
else: | |
logger.error("No response generated by llama_generate") | |
except Exception as e: | |
logger.error(f"Error in generate_response: {e}") | |
def process_generated_response(self, response_text): | |
try: | |
self.response_queue.put({'type': 'text', 'data': response_text}) | |
self.play_response_audio(response_text) | |
except Exception as e: | |
logger.error(f"Error in process_generated_response: {e}") | |
def play_response_audio(self, response_text): | |
try: | |
audio = generate( | |
text=response_text, | |
model="eleven_multilingual_v2" | |
) | |
play(audio) | |
except Exception as e: | |
logger.error(f"Error in play_response_audio: {e}") | |
# def play_response_audio(self, response_text): | |
# try: | |
# sentences = re.split('(?<=[.!?]) +', response_text) | |
# silence = np.zeros(int(0.05 * SAMPLE_RATE)) | |
# | |
# def generate_sentence_audio(sentence): | |
# try: | |
# return generate_audio(sentence, history_prompt="v2/en_speaker_6") | |
# except Exception as e: | |
# logger.error(f"Error generating audio for sentence '{sentence}': {e}") | |
# return np.zeros(0) | |
# with ThreadPoolExecutor(max_workers=min(1, len(sentences))) as executor: | |
# audio_arrays = list(executor.map(generate_sentence_audio, sentences)) | |
# audio_arrays = [audio for audio in audio_arrays if audio.size > 0] | |
# if audio_arrays: | |
# pieces = [piece for audio in audio_arrays for piece in (audio, silence.copy())] | |
# audio = np.concatenate(pieces[:-1]) | |
# file_name = str(uuid.uuid4()) + ".wav" | |
# write_wav(file_name, SAMPLE_RATE, audio) | |
# sd.play(audio, samplerate=SAMPLE_RATE) | |
# else: | |
# logger.error("No audio generated due to errors in all sentences.") | |
# if torch.cuda.is_available(): | |
# torch.cuda.empty_cache() | |
# except Exception as e: | |
# logger.error(f"Error in play_response_audio: {e}") | |
def run_async_in_thread(self, loop, coro_func, user_input, result_queue): | |
asyncio.set_event_loop(loop) | |
coro = coro_func(user_input, result_queue) | |
loop.run_until_complete(coro) | |
async def fetch_interactions(self): | |
try: | |
query = { | |
"query": """ | |
{ | |
Get { | |
InteractionHistory(sort: [{path: "response_time", order: desc}], limit: 15) { | |
user_message | |
ai_response | |
response_time | |
} | |
} | |
} | |
""" | |
} | |
response = self.client.query.raw(query) | |
if 'data' in response and 'Get' in response['data'] and 'InteractionHistory' in response['data']['Get']: | |
interactions = response['data']['Get']['InteractionHistory'] | |
return [{'user_message': interaction['user_message'], 'ai_response': interaction['ai_response'], 'response_time': interaction['response_time']} for interaction in interactions] | |
else: | |
return [] | |
except Exception as e: | |
logger.error(f"Error fetching interactions from Weaviate: {e}") | |
return [] | |
def on_submit(self, event=None): | |
user_input = self.input_textbox.get("1.0", tk.END).strip() | |
if user_input: | |
self.text_box.insert(tk.END, f"{self.user_id}: {user_input}\n") | |
self.input_textbox.delete("1.0", tk.END) | |
self.input_textbox.config(height=1) | |
self.text_box.see(tk.END) | |
self.executor.submit(asyncio.run, self.generate_response(user_input)) | |
self.executor.submit(self.generate_images, user_input) | |
self.after(100, self.process_queue) | |
return "break" | |
def create_object(self, class_name, object_data): | |
unique_string = f"{object_data['time']}-{object_data['user_message']}-{object_data['ai_response']}" | |
object_uuid = uuid.uuid5(uuid.NAMESPACE_URL, unique_string).hex | |
try: | |
self.client.data_object.create(object_data, object_uuid, class_name) | |
print(f"Object created with UUID: {object_uuid}") | |
except Exception as e: | |
print(f"Error creating object in Weaviate: {e}") | |
return object_uuid | |
def process_queue(self): | |
try: | |
while True: | |
response = self.response_queue.get_nowait() | |
if response['type'] == 'text': | |
self.text_box.insert(tk.END, f"AI: {response['data']}\n") | |
elif response['type'] == 'image': | |
self.image_label.configure(image=response['data']) | |
self.image_label.image = response['data'] | |
self.text_box.see(tk.END) | |
except queue.Empty: | |
self.after(100, self.process_queue) | |
def extract_keywords(self, message): | |
try: | |
blob = TextBlob(message) | |
nouns = blob.noun_phrases | |
return list(nouns) | |
except Exception as e: | |
print(f"Error in extract_keywords: {e}") | |
return [] | |
def generate_images(self, message): | |
try: | |
url = config['IMAGE_GENERATION_URL'] | |
payload = self.prepare_image_generation_payload(message) | |
response = requests.post(url, json=payload) | |
if response.status_code == 200: | |
self.process_image_response(response) | |
else: | |
logger.error(f"Error generating image: HTTP {response.status_code}") | |
except Exception as e: | |
logger.error(f"Error in generate_images: {e}") | |
def prepare_image_generation_payload(self, message): | |
return { | |
"prompt": message, | |
"steps": 51, | |
"seed": random.randrange(sys.maxsize), | |
"enable_hr": "false", | |
"denoising_strength": "0.7", | |
"cfg_scale": "7", | |
"width": 526, | |
"height": 756, | |
"restore_faces": "true", | |
} | |
def process_image_response(self, response): | |
try: | |
image_data = response.json()['images'] | |
for img_data in image_data: | |
img_tk = self.convert_base64_to_tk(img_data) | |
self.response_queue.put({'type': 'image', 'data': img_tk}) | |
self.save_generated_image(img_tk) | |
except ValueError as e: | |
logger.error("Error processing image data: ", e) | |
def convert_base64_to_tk(self, base64_data): | |
if ',' in base64_data: | |
base64_data = base64_data.split(",", 1)[1] | |
image_data = base64.b64decode(base64_data) | |
image = Image.open(io.BytesIO(image_data)) | |
return ImageTk.PhotoImage(image) | |
def save_generated_image(self, img_tk): | |
file_name = f"generated_image_{uuid.uuid4()}.png" | |
image_path = os.path.join("saved_images", file_name) | |
if not os.path.exists("saved_images"): | |
os.makedirs("saved_images") | |
img_tk.image.save(image_path) | |
def update_username(self): | |
"""Update the username based on the input field.""" | |
new_username = self.username_entry.get() | |
if new_username: | |
self.user_id = new_username | |
print(f"Username updated to: {self.user_id}") | |
else: | |
print("Please enter a valid username.") | |
def setup_gui(self): | |
self.title("OneLoveIPFS AI") | |
window_width = 1920 | |
window_height = 1080 | |
screen_width = self.winfo_screenwidth() | |
screen_height = self.winfo_screenheight() | |
center_x = int(screen_width/2 - window_width/2) | |
center_y = int(screen_height/2 - window_height/2) | |
self.geometry(f'{window_width}x{window_height}+{center_x}+{center_y}') | |
self.grid_columnconfigure(1, weight=1) | |
self.grid_columnconfigure((2, 3), weight=0) | |
self.grid_rowconfigure((0, 1, 2), weight=1) | |
# Configure grid weights | |
self.grid_columnconfigure(0, weight=0) # Sidebar column | |
self.grid_columnconfigure(1, weight=1) # Main content column | |
# Adjust other columns as needed | |
self.sidebar_frame = customtkinter.CTkFrame(self, width=350, corner_radius=0) | |
self.sidebar_frame.grid(row=0, column=0, rowspan=4, sticky="nsew") | |
logo_img = Image.open(logo_path) | |
logo_photo = ImageTk.PhotoImage(logo_img) | |
self.logo_label = customtkinter.CTkLabel(self.sidebar_frame, image=logo_photo) | |
self.logo_label.image = logo_photo | |
self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10)) | |
self.image_label = customtkinter.CTkLabel(self.sidebar_frame) | |
self.image_label.grid(row=1, column=0, padx=20, pady=10) | |
placeholder_image = Image.new('RGB', (140, 140), color = (73, 109, 137)) | |
self.placeholder_photo = ImageTk.PhotoImage(placeholder_image) | |
self.image_label.configure(image=self.placeholder_photo) | |
self.image_label.image = self.placeholder_photo | |
self.text_box = customtkinter.CTkTextbox(self, bg_color="white", text_color="white", border_width=0, height=360, width=50, font=customtkinter.CTkFont(size=18)) | |
self.text_box.grid(row=0, column=1, rowspan=3, columnspan=3, padx=(20, 20), pady=(20, 20), sticky="nsew") | |
self.input_textbox_frame = customtkinter.CTkFrame(self) | |
self.input_textbox_frame.grid(row=3, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew") | |
self.input_textbox_frame.grid_columnconfigure(0, weight=1) | |
self.input_textbox_frame.grid_rowconfigure(0, weight=1) | |
self.input_textbox = tk.Text(self.input_textbox_frame, font=("Roboto Medium", 10), | |
bg=customtkinter.ThemeManager.theme["CTkFrame"]["fg_color"][1 if customtkinter.get_appearance_mode() == "Dark" else 0], | |
fg=customtkinter.ThemeManager.theme["CTkLabel"]["text_color"][1 if customtkinter.get_appearance_mode() == "Dark" else 0], relief="flat", height=1) | |
self.input_textbox.grid(padx=20, pady=20, sticky="nsew") | |
self.input_textbox_scrollbar = customtkinter.CTkScrollbar(self.input_textbox_frame, command=self.input_textbox.yview) | |
self.input_textbox_scrollbar.grid(row=0, column=1, sticky="ns", pady=5) | |
self.input_textbox.configure(yscrollcommand=self.input_textbox_scrollbar.set) | |
self.send_button = customtkinter.CTkButton(self, text="Send", command=self.on_submit) | |
self.send_button.grid(row=3, column=3, padx=(0, 20), pady=(20, 20), sticky="nsew") | |
self.input_textbox.bind('<Return>', self.on_submit) | |
# Settings Box for Username | |
self.settings_frame = customtkinter.CTkFrame(self.sidebar_frame, corner_radius=10) | |
self.settings_frame.grid(row=3, column=0, padx=20, pady=10, sticky="ew") | |
self.username_label = customtkinter.CTkLabel(self.settings_frame, text="Username:") | |
self.username_label.grid(row=0, column=0, padx=5, pady=5) | |
self.username_entry = customtkinter.CTkEntry(self.settings_frame, width=120, placeholder_text="Enter username") | |
self.username_entry.grid(row=0, column=1, padx=5, pady=5) | |
self.username_entry.insert(0, "gray00") # Default username | |
self.update_username_button = customtkinter.CTkButton(self.settings_frame, text="Update", command=self.update_username) | |
self.update_username_button.grid(row=0, column=2, padx=5, pady=5) | |
if __name__ == "__main__": | |
try: | |
user_id = "gray00" | |
app = App(user_id) | |
loop = asyncio.get_event_loop() | |
asyncio.run(init_db()) | |
app.mainloop() | |
except Exception as e: | |
logger.error(f"Application error: {e}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment