Skip to content

Instantly share code, notes, and snippets.

@graylan0
Created November 23, 2023 19:46
Show Gist options
  • Save graylan0/d1b7b3a9f41a42e8f921fd6f837da755 to your computer and use it in GitHub Desktop.
Save graylan0/d1b7b3a9f41a42e8f921fd6f837da755 to your computer and use it in GitHub Desktop.
import customtkinter as ctk
import asyncio
import numpy as np
import uuid
import queue
import threading
import concurrent.futures
from textblob import TextBlob
import pennylane as qml
import weaviate
import re
import os
import json
from PIL import Image, ImageTk
import tkinter as tk
dev = qml.device("default.qubit", wires=4)
@qml.qnode(dev)
def quantum_circuit(color_code, amplitude):
r, g, b = [int(color_code[i:i+2], 16) for i in (1, 3, 5)]
r, g, b = r / 255.0, g / 255.0, b / 255.0
qml.RY(np.arcsin(np.sqrt(r)), wires=0)
qml.RY(np.arcsin(np.sqrt(g)), wires=1)
qml.RY(np.arcsin(np.sqrt(b)), wires=2)
qml.RY(np.arcsin(np.sqrt(amplitude)), wires=3)
qml.CNOT(wires=[0, 1])
qml.CNOT(wires=[1, 2])
qml.CNOT(wires=[2, 3])
return qml.state()
def quantum_holographic_wavefunction(x, y, z, t):
norm = np.sqrt(x**2 + y**2 + z**2)
return np.exp(-norm / t) / norm
def multiversal_tunesync(x, y, z, t, alpha, psi_qh):
phase = alpha * (x + y + z - t)
return np.fft.fft(psi_qh * np.exp(1j * phase))
def hypertime_darkmatter_detector(coordinates, time, alpha, psi_qh):
x, y, z = coordinates
wavefunction = quantum_holographic_wavefunction(x, y, z, time)
tunesync = multiversal_tunesync(x, y, z, time, alpha, psi_qh)
detection_probability = np.abs(wavefunction)**2
return wavefunction, tunesync, detection_probability
class ChatApp(ctk.CTk):
def __init__(self):
super().__init__()
self.client = weaviate.Client("http://localhost:8080")
self.response_queue = queue.Queue()
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=10)
self.running = True
self.setup_gui()
async def llama_generate(self, prompt, max_tokens=2500, chunk_size=500):
return {"choices": [{"text": "Simulated response for: " + prompt}]}
async def generate_color_code(self, prompt, retry_limit=3):
for attempt in range(retry_limit):
color_code_response = await self.llama_generate(prompt)
color_code = color_code_response['choices'][0]['text'].strip()
pattern = r'^#(?:[0-9a-fA-F]{3}){1,2}$'
if re.match(pattern, color_code):
return color_code
else:
prompt = f"Attempt {attempt + 1}: Please provide a valid color code. " + prompt
raise ValueError("Valid color code not generated after retries.")
def create_interaction_history_object(self, user_message, ai_response):
interaction_object = {
"user_message": user_message,
"ai_response": ai_response
}
object_uuid = uuid.uuid4()
self.client.data_object.create(
data_object=interaction_object,
class_name="InteractionHistory",
uuid=object_uuid
)
def map_keywords_to_weaviate_classes(self, keywords, context):
return {keyword: "ClassBasedOnKeywordAndContext" for keyword in keywords}
def retrieve_past_interactions(self, message, result_queue):
past_interactions = []
result_queue.put(past_interactions)
def retrieve_context(self, message):
context = "Context based on message"
return context
def extract_keywords(self, message):
return [word for word in message.split() if word.isalpha()]
def sentiment_to_amplitude(self, sentiment_score):
return (sentiment_score + 1) / 2
def generate_response(self, message):
keywords = self.extract_keywords(message)
context = self.retrieve_context(message)
keyword_class_mapping = self.map_keywords_to_weaviate_classes(keywords, context)
past_interactions = self.retrieve_past_interactions(message, self.response_queue)
color_code_prompt = "Generate a color code for: " + message + ", Context: " + context + ", Past Interactions: " + str(past_interactions)
color_code = asyncio.run(self.generate_color_code(color_code_prompt))
sentiment_score = TextBlob(message).sentiment.polarity
amplitude = self.sentiment_to_amplitude(sentiment_score)
quantum_state = quantum_circuit(color_code, amplitude)
x, y, z, t = np.random.rand(4)
psi_qh = quantum_holographic_wavefunction(x, y, z, t)
alpha = np.random.rand()
tunesync = multiversal_tunesync(x, y, z, t, alpha, psi_qh)
wavefunction, tunesync, detection_probability = hypertime_darkmatter_detector((x, y, z), t, alpha, psi_qh)
llama_response_prompt = "Respond to: " + message + ", Quantum State: " + str(quantum_state) + ", Tunesync: " + str(tunesync) + ", Detection Probability: " + str(detection_probability)
llama_response = asyncio.run(self.llama_generate(llama_response_prompt))
final_response = "Quantum AI says: " + llama_response['choices'][0]['text']
self.create_interaction_history_object(message, final_response)
return final_response
def save_task_data(self, task_topic, data):
folder_path = f"./TaskData/{task_topic}"
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, f"{uuid.uuid4()}.json")
with open(file_path, 'w') as file:
json.dump(data, file)
def process_task(self, task):
response = self.generate_response(task['message'])
self.save_task_data(task['topic'], {'message': task['message'], 'response': response})
def start_processing(self):
while self.running:
try:
task = self.response_queue.get(timeout=1)
self.executor.submit(self.process_task, task)
except queue.Empty:
continue
def stop(self):
self.running = False
self.executor.shutdown(wait=True)
def setup_gui(self):
self.title("OneLoveIPFS AI")
self.geometry("1100x580")
self.grid_columnconfigure(1, weight=1)
self.grid_columnconfigure((2, 3), weight=0)
self.grid_rowconfigure((0, 1, 2), weight=1)
self.sidebar_frame = ctk.CTkFrame(self, width=140, corner_radius=0)
self.sidebar_frame.grid(row=0, column=0, rowspan=4, sticky="nsew")
self.sidebar_frame.grid_rowconfigure(4, weight=1)
logo_path = os.path.join(os.getcwd(), "logo.png")
logo_img = Image.open(logo_path).resize((140, 77))
logo_photo = ImageTk.PhotoImage(logo_img)
self.logo_label = tk.Label(self.sidebar_frame, image=logo_photo, bg=self.sidebar_frame["bg"])
self.logo_label.image = logo_photo
self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10))
self.text_box = ctk.CTkTextbox(self, bg_color="white", text_color="white", border_width=0, height=20, width=50, font=ctk.CTkFont(size=13))
self.text_box.grid(row=0, column=1, rowspan=3, columnspan=3, padx=(20, 20), pady=(20, 20), sticky="nsew")
self.entry = ctk.CTkEntry(self, placeholder_text="Chat With Llama")
self.entry.grid(row=3, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew")
self.send_button = ctk.CTkButton(self, text="Send", command=self.on_submit)
self.send_button.grid(row=3, column=3, padx=(0, 20), pady=(20, 20), sticky="nsew")
self.entry.bind('<Return>', self.on_submit)
self.image_label = tk.Label(self)
self.image_label.grid(row=4, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew")
def on_submit(self, event=None):
user_input = self.entry.get()
if user_input:
self.response_queue.put({'message': user_input, 'topic': 'General'})
self.entry.delete(0, 'end')
def start(self):
threading.Thread(target=self.start_processing, daemon=True).start()
self.mainloop()
if __name__ == '__main__':
app = ChatApp()
app.start()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment