Created
November 23, 2023 19:46
-
-
Save graylan0/d1b7b3a9f41a42e8f921fd6f837da755 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import customtkinter as ctk | |
import asyncio | |
import numpy as np | |
import uuid | |
import queue | |
import threading | |
import concurrent.futures | |
from textblob import TextBlob | |
import pennylane as qml | |
import weaviate | |
import re | |
import os | |
import json | |
from PIL import Image, ImageTk | |
import tkinter as tk | |
dev = qml.device("default.qubit", wires=4) | |
@qml.qnode(dev) | |
def quantum_circuit(color_code, amplitude): | |
r, g, b = [int(color_code[i:i+2], 16) for i in (1, 3, 5)] | |
r, g, b = r / 255.0, g / 255.0, b / 255.0 | |
qml.RY(np.arcsin(np.sqrt(r)), wires=0) | |
qml.RY(np.arcsin(np.sqrt(g)), wires=1) | |
qml.RY(np.arcsin(np.sqrt(b)), wires=2) | |
qml.RY(np.arcsin(np.sqrt(amplitude)), wires=3) | |
qml.CNOT(wires=[0, 1]) | |
qml.CNOT(wires=[1, 2]) | |
qml.CNOT(wires=[2, 3]) | |
return qml.state() | |
def quantum_holographic_wavefunction(x, y, z, t): | |
norm = np.sqrt(x**2 + y**2 + z**2) | |
return np.exp(-norm / t) / norm | |
def multiversal_tunesync(x, y, z, t, alpha, psi_qh): | |
phase = alpha * (x + y + z - t) | |
return np.fft.fft(psi_qh * np.exp(1j * phase)) | |
def hypertime_darkmatter_detector(coordinates, time, alpha, psi_qh): | |
x, y, z = coordinates | |
wavefunction = quantum_holographic_wavefunction(x, y, z, time) | |
tunesync = multiversal_tunesync(x, y, z, time, alpha, psi_qh) | |
detection_probability = np.abs(wavefunction)**2 | |
return wavefunction, tunesync, detection_probability | |
class ChatApp(ctk.CTk): | |
def __init__(self): | |
super().__init__() | |
self.client = weaviate.Client("http://localhost:8080") | |
self.response_queue = queue.Queue() | |
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=10) | |
self.running = True | |
self.setup_gui() | |
async def llama_generate(self, prompt, max_tokens=2500, chunk_size=500): | |
return {"choices": [{"text": "Simulated response for: " + prompt}]} | |
async def generate_color_code(self, prompt, retry_limit=3): | |
for attempt in range(retry_limit): | |
color_code_response = await self.llama_generate(prompt) | |
color_code = color_code_response['choices'][0]['text'].strip() | |
pattern = r'^#(?:[0-9a-fA-F]{3}){1,2}$' | |
if re.match(pattern, color_code): | |
return color_code | |
else: | |
prompt = f"Attempt {attempt + 1}: Please provide a valid color code. " + prompt | |
raise ValueError("Valid color code not generated after retries.") | |
def create_interaction_history_object(self, user_message, ai_response): | |
interaction_object = { | |
"user_message": user_message, | |
"ai_response": ai_response | |
} | |
object_uuid = uuid.uuid4() | |
self.client.data_object.create( | |
data_object=interaction_object, | |
class_name="InteractionHistory", | |
uuid=object_uuid | |
) | |
def map_keywords_to_weaviate_classes(self, keywords, context): | |
return {keyword: "ClassBasedOnKeywordAndContext" for keyword in keywords} | |
def retrieve_past_interactions(self, message, result_queue): | |
past_interactions = [] | |
result_queue.put(past_interactions) | |
def retrieve_context(self, message): | |
context = "Context based on message" | |
return context | |
def extract_keywords(self, message): | |
return [word for word in message.split() if word.isalpha()] | |
def sentiment_to_amplitude(self, sentiment_score): | |
return (sentiment_score + 1) / 2 | |
def generate_response(self, message): | |
keywords = self.extract_keywords(message) | |
context = self.retrieve_context(message) | |
keyword_class_mapping = self.map_keywords_to_weaviate_classes(keywords, context) | |
past_interactions = self.retrieve_past_interactions(message, self.response_queue) | |
color_code_prompt = "Generate a color code for: " + message + ", Context: " + context + ", Past Interactions: " + str(past_interactions) | |
color_code = asyncio.run(self.generate_color_code(color_code_prompt)) | |
sentiment_score = TextBlob(message).sentiment.polarity | |
amplitude = self.sentiment_to_amplitude(sentiment_score) | |
quantum_state = quantum_circuit(color_code, amplitude) | |
x, y, z, t = np.random.rand(4) | |
psi_qh = quantum_holographic_wavefunction(x, y, z, t) | |
alpha = np.random.rand() | |
tunesync = multiversal_tunesync(x, y, z, t, alpha, psi_qh) | |
wavefunction, tunesync, detection_probability = hypertime_darkmatter_detector((x, y, z), t, alpha, psi_qh) | |
llama_response_prompt = "Respond to: " + message + ", Quantum State: " + str(quantum_state) + ", Tunesync: " + str(tunesync) + ", Detection Probability: " + str(detection_probability) | |
llama_response = asyncio.run(self.llama_generate(llama_response_prompt)) | |
final_response = "Quantum AI says: " + llama_response['choices'][0]['text'] | |
self.create_interaction_history_object(message, final_response) | |
return final_response | |
def save_task_data(self, task_topic, data): | |
folder_path = f"./TaskData/{task_topic}" | |
if not os.path.exists(folder_path): | |
os.makedirs(folder_path) | |
file_path = os.path.join(folder_path, f"{uuid.uuid4()}.json") | |
with open(file_path, 'w') as file: | |
json.dump(data, file) | |
def process_task(self, task): | |
response = self.generate_response(task['message']) | |
self.save_task_data(task['topic'], {'message': task['message'], 'response': response}) | |
def start_processing(self): | |
while self.running: | |
try: | |
task = self.response_queue.get(timeout=1) | |
self.executor.submit(self.process_task, task) | |
except queue.Empty: | |
continue | |
def stop(self): | |
self.running = False | |
self.executor.shutdown(wait=True) | |
def setup_gui(self): | |
self.title("OneLoveIPFS AI") | |
self.geometry("1100x580") | |
self.grid_columnconfigure(1, weight=1) | |
self.grid_columnconfigure((2, 3), weight=0) | |
self.grid_rowconfigure((0, 1, 2), weight=1) | |
self.sidebar_frame = ctk.CTkFrame(self, width=140, corner_radius=0) | |
self.sidebar_frame.grid(row=0, column=0, rowspan=4, sticky="nsew") | |
self.sidebar_frame.grid_rowconfigure(4, weight=1) | |
logo_path = os.path.join(os.getcwd(), "logo.png") | |
logo_img = Image.open(logo_path).resize((140, 77)) | |
logo_photo = ImageTk.PhotoImage(logo_img) | |
self.logo_label = tk.Label(self.sidebar_frame, image=logo_photo, bg=self.sidebar_frame["bg"]) | |
self.logo_label.image = logo_photo | |
self.logo_label.grid(row=0, column=0, padx=20, pady=(20, 10)) | |
self.text_box = ctk.CTkTextbox(self, bg_color="white", text_color="white", border_width=0, height=20, width=50, font=ctk.CTkFont(size=13)) | |
self.text_box.grid(row=0, column=1, rowspan=3, columnspan=3, padx=(20, 20), pady=(20, 20), sticky="nsew") | |
self.entry = ctk.CTkEntry(self, placeholder_text="Chat With Llama") | |
self.entry.grid(row=3, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew") | |
self.send_button = ctk.CTkButton(self, text="Send", command=self.on_submit) | |
self.send_button.grid(row=3, column=3, padx=(0, 20), pady=(20, 20), sticky="nsew") | |
self.entry.bind('<Return>', self.on_submit) | |
self.image_label = tk.Label(self) | |
self.image_label.grid(row=4, column=1, columnspan=2, padx=(20, 0), pady=(20, 20), sticky="nsew") | |
def on_submit(self, event=None): | |
user_input = self.entry.get() | |
if user_input: | |
self.response_queue.put({'message': user_input, 'topic': 'General'}) | |
self.entry.delete(0, 'end') | |
def start(self): | |
threading.Thread(target=self.start_processing, daemon=True).start() | |
self.mainloop() | |
if __name__ == '__main__': | |
app = ChatApp() | |
app.start() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment