Created
January 23, 2014 01:48
-
-
Save greeness/8571326 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "2d Convolution" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "%load_ext octavemagic", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "octave window = [1 0 1; 0 1 0 ;1 0 1]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": "window =\n\n 1 0 1\n 0 1 0\n 1 0 1\n" | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "octave image = [1 1 1 0 0 ; 0 1 1 1 0; 0 0 1 1 1; 0 0 1 1 0; 0 1 1 0 0]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": "image =\n\n 1 1 1 0 0\n 0 1 1 1 0\n 0 0 1 1 1\n 0 0 1 1 0\n 0 1 1 0 0\n" | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "Now we convolve the image with the 3x3 window using `conv2`:" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "octave conv2(image, window);", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 8, | |
"text": "array([[ 1., 1., 2., 1., 1., 0., 0.],\n [ 0., 2., 2., 3., 1., 1., 0.],\n [ 1., 1., 4., 3., 4., 1., 1.],\n [ 0., 1., 2., 4., 3., 3., 0.],\n [ 0., 1., 2., 3., 4., 1., 1.],\n [ 0., 0., 2., 2., 1., 1., 0.],\n [ 0., 1., 1., 1., 1., 0., 0.]])" | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "Suppose the image dimension is n1xn1, and the windown dimension is n2xn2. The default shape is 'full' which results n1 + n2 - 1 dimension, but we want 'valid' which results n1 - n2 + 1 dimension." | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "octave conv2(image, window, SHAPE='valid');", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 9, | |
"text": "array([[ 4., 3., 4.],\n [ 2., 4., 3.],\n [ 2., 3., 4.]])" | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": "![sf](http://deeplearning.stanford.edu/wiki/images/6/6c/Convolution_schematic.gif)" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment