Created
September 14, 2015 12:35
-
-
Save gregpinero/efd00c4b4b9f1540fcba to your computer and use it in GitHub Desktop.
Using numpy and scipy on images, applying filters, etc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from time import time | |
from PIL import Image | |
import numpy as np | |
from scipy.ndimage.filters import generic_filter, gaussian_filter | |
def trace(fn): | |
"""A decorator to time your functions""" | |
def trace_func(*args, **kwargs): | |
print fn.__name__ + '...', | |
sys.stdout.flush() | |
beg = time() | |
ret = fn(*args, **kwargs) | |
tot = time() - beg | |
print '%.3f' % tot | |
return ret | |
return trace_func | |
def matlab_style_gauss2D(shape=(3,3),sigma=0.5): | |
""" | |
2D gaussian mask - should give the same result as MATLAB's | |
fspecial('gaussian',[shape],[sigma]) | |
http://stackoverflow.com/questions/17190649/how-to-obtain-a-gaussian-filter-in-python | |
""" | |
m,n = [(ss-1.)/2. for ss in shape] | |
y,x = np.ogrid[-m:m+1,-n:n+1] | |
h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) ) | |
h[ h < np.finfo(h.dtype).eps*h.max() ] = 0 | |
sumh = h.sum() | |
if sumh != 0: | |
h /= sumh | |
return h | |
@trace | |
def my_image_filter2(img, filter): | |
img = Image.open(img) | |
img.convert('L') | |
array = np.array(img) | |
flt_filter = filter.flatten() | |
def fnc(buffer): | |
return (flt_filter * buffer).sum() | |
filtered_array = generic_filter(array, fnc, size=filter.shape, mode='constant', cval=0) | |
return Image.fromarray(filtered_array,'L') | |
@trace | |
def my_image_filter_gaussian(img): | |
img = Image.open(img) | |
img.convert('L') | |
array = np.array(img) | |
filtered_array = gaussian_filter(array, sigma=3, mode='constant', cval=0) | |
return Image.fromarray(filtered_array,'L') | |
@trace | |
def median_filter(img, shape): | |
img = Image.open(img) | |
img.convert('L') | |
array = np.array(img) | |
filtered_array = np.zeros(array.shape, np.uint8) | |
x_win_width = shape[0]/2 | |
y_win_width = shape[1]/2 | |
for y in range(array.shape[1]): | |
#import pdb;pdb.set_trace() | |
for x in range(array.shape[0]): | |
#print x,y | |
#print "looking at neigbhorhood",x-x_win_width,x+x_win_width+1, y-y_win_width,y+y_win_width+1 | |
neighborhood = array[x-x_win_width:x+x_win_width+1, y-y_win_width:y+y_win_width+1] | |
if neighborhood.shape == shape: | |
#import pdb;pdb.set_trace() | |
vals = neighborhood.flatten() | |
vals.sort() | |
filtered_array[x,y] = vals[len(vals)/2] | |
else: | |
pass #Leave as 0 for borders | |
return Image.fromarray(filtered_array,'L') | |
def normalize(array, min_range, max_range): | |
array = (min_range + ((array-min_range)*(max_range-min_range)))/(array.max() - array.min()) | |
return array | |
@trace | |
def gradient(img): | |
img = Image.open(img) | |
img.convert('L') | |
array = np.array(img) | |
gx, gy = np.gradient(array) | |
mag = np.sqrt(gx**2 + gy**2) | |
#stretch over 0-255 | |
mag = normalize(mag, 0, 255) | |
direction = np.nan_to_num(np.arctan(gx/gy)) | |
print direction | |
direction = normalize(direction,0,255) | |
print np.histogram(mag, bins=255)[0] | |
print np.histogram(direction, bins=255) | |
return Image.fromarray(mag,'L') | |
@trace | |
def edges(img): | |
from skimage import feature | |
img = Image.open(img) | |
img.convert('L') | |
array = np.array(img) | |
print repr(array) | |
out = np.uint8(feature.canny(array, sigma=3, ) * 255) | |
print repr(out) | |
return Image.fromarray(out,mode='L') | |
''' | |
@trace | |
def edges(img): | |
from skimage import feature | |
from skimage import io | |
img = io.imread('Q_3.jpg') | |
print repr(img) | |
#img.convert('L') | |
#array = np.array(img) | |
#print repr(array) | |
out = feature.canny(img, sigma=1, ) | |
print repr(out) | |
return Image.fromarray(out,'L') | |
''' | |
@trace | |
def subtract_images(img1,img2): | |
img1 = Image.open(img1) | |
img1=img1.convert('L') | |
img2 = Image.open(img2) | |
img2 = img2.convert('L') | |
array1 = np.array(img1) | |
array2 = np.array(img2) | |
result = array1 - array2 | |
print result | |
#why no negative values, why doesn't normalize work? | |
result = normalize(result, 0, 255) | |
print result | |
return Image.fromarray(result,'L') | |
@trace | |
def my_image_filter(img, filter): | |
print "Applying filter", filter | |
img = Image.open(img) | |
img.convert('L') | |
array = np.array(img) | |
filtered_array = np.zeros(array.shape, np.uint8) | |
x_win_width = filter.shape[0]/2 | |
y_win_width = filter.shape[1]/2 | |
for y in range(array.shape[1]): | |
#import pdb;pdb.set_trace() | |
for x in range(array.shape[0]): | |
#print x,y | |
#print "looking at neigbhorhood",x-x_win_width,x+x_win_width+1, y-y_win_width,y+y_win_width+1 | |
neighborhood = array[x-x_win_width:x+x_win_width+1, y-y_win_width:y+y_win_width+1] | |
if neighborhood.shape == filter.shape: | |
#import pdb;pdb.set_trace() | |
filtered_array[x,y] = np.sum(filter * neighborhood) | |
else: | |
pass #Leave as 0 for borders | |
return Image.fromarray(filtered_array,'L') | |
if __name__ == '__main__': | |
edges('Q_3.jpg').save('Q_3_edges.jpg') | |
#subtract_images('walk_1.jpg','walk_2.jpg').save('walk_new.jpg') | |
#gradient('Q_3.jpg').save('Q_3_gradient.jpg') | |
sys.exit() | |
#my_image_filter_gaussian('House1.jpg').save('House1_scipyguass.jpg') | |
median_filter('Noisyimage1.jpg', (5,5)).save('Noisyimage1_median.jpg') | |
median_filter('Noisyimage2.jpg', (5,5)).save('Noisyimage2_median.jpg') | |
my_image_filter('Noisyimage1.jpg', np.ones((5,5)) * (1/25.)).save('Noisyimage1_avg.jpg') | |
my_image_filter('Noisyimage2.jpg', np.ones((5,5)) * (1/25.)).save('Noisyimage2_avg.jpg') | |
sys.exit() | |
filters = dict( | |
avg_kernal_3_3 = np.ones((3,3)) * (1/9.), | |
avg_kernal_5_5 = np.ones((5,5)) * (1/25.), | |
sobel_3_3_x = np.array( | |
[ | |
[-1,0,1], | |
[-2,0,2], | |
[-1,0,1], | |
]), | |
sobel_3_3_y = np.array( | |
[ | |
[-1,-2,-1], | |
[0,0,0], | |
[1,2,1], | |
]), | |
prewitt_3_3_x = np.array( | |
[ | |
[-1,0,1], | |
[-1,0,1], | |
[-1,0,1], | |
]), | |
prewitt_3_3_y = np.array( | |
[ | |
[1,1,1], | |
[0,0,0], | |
[-1,-1,-1], | |
]), | |
guass_s1 = matlab_style_gauss2D(shape=(3,3), sigma=1), | |
guass_s2 = matlab_style_gauss2D(shape=(5,5), sigma=2), | |
guass_s3 = matlab_style_gauss2D(shape=(7,7), sigma=3), | |
) | |
for fname, filter in sorted(filters.items()): | |
my_image_filter('House1.jpg', filter).save('House1_'+fname+'.jpg') | |
my_image_filter('House2.jpg', filter).save('House2_'+fname+'.jpg') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment