Created
July 21, 2015 11:43
-
-
Save groakat/b9b385e7a81fefd66ca9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def SpecGen(self, filepath): | |
""" | |
Code to generate spectrogram adapted from code posted on https://mail.python.org/pipermail/chicago/2010-December/007314.html by Ken Schutte ([email protected]) | |
""" | |
sr, x = scipy.io.wavfile.read(filepath) | |
## Parameters | |
nstep = int(sr * self.specNStepMod) | |
nwin = int(sr * self.specNWinMod) | |
nfft = nwin | |
# Get all windows of x with length n as a single array, using strides to avoid data duplication | |
#shape = (nfft, len(range(nfft, len(x), nstep))) | |
shape = (nfft, ((x.shape[0] - nfft - 1)/nstep)+1) | |
strides = (x.itemsize, nstep*x.itemsize) | |
x_wins = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) | |
# Apply hamming window | |
x_wins_ham = np.hamming(x_wins.shape[0])[..., np.newaxis] * x_wins | |
# compute fft | |
fft_mat = np.fft.fft(x_wins_ham, n=nfft, axis=0)[:(nfft/2), :] | |
# log magnitude | |
fft_mat_lm = np.log(np.abs(fft_mat)) | |
return fft_mat_lm.T |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment