Created
January 23, 2018 20:54
-
-
Save grosscol/09ca5a4e48f1adfe4968c4d4a7652ee5 to your computer and use it in GitHub Desktop.
Impute missing dates per id
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(dplyr) | |
df <- structure( | |
list( | |
ID = structure( | |
c( | |
1L, | |
1L, | |
1L, | |
1L, | |
1L, | |
1L, | |
3L, | |
3L, | |
3L, | |
3L, | |
3L, | |
4L, | |
4L, | |
4L, | |
4L, | |
4L, | |
4L, | |
4L, | |
4L, | |
4L, | |
2L, | |
2L, | |
2L, | |
2L | |
), | |
.Label = c("xx", "xyz", "yy", "zz"), | |
class = "factor" | |
), | |
Date = structure( | |
c( | |
8L, | |
9L, | |
10L, | |
11L, | |
12L, | |
13L, | |
14L, | |
15L, | |
16L, | |
17L, | |
18L, | |
1L, | |
1L, | |
2L, | |
3L, | |
4L, | |
5L, | |
6L, | |
7L, | |
19L, | |
20L, | |
21L, | |
22L, | |
23L | |
), | |
.Label = c( | |
"1989-09-12", | |
"1989-09-13", | |
"1989-09-14", | |
"1989-09-19", | |
"1989-09-23", | |
"1990-01-12", | |
"1990-01-13", | |
"1996-09-12", | |
"1996-09-13", | |
"1996-09-16", | |
"1996-09-17", | |
"1996-09-18", | |
"1996-09-19", | |
"2000-09-12", | |
"2000-09-13", | |
"2000-11-10", | |
"2000-11-11", | |
"2000-11-12", | |
"2001-09-07", | |
"2001-09-08", | |
"2001-09-09", | |
"2001-09-10", | |
"2001-09-11" | |
), | |
class = "factor" | |
), | |
val = c(3, 5, | |
9, 3, 5, 6, 8, 7, 9, 5, 3, 2, 8, 8, 5, 3, 2, 1, 5, 7, NA, NA, | |
NA, NA) | |
), | |
.Names = c("ID", "Date", "val"), | |
row.names = c(NA, | |
df$Date <- | |
as.Date(df$Date) - | |
24L), | |
class = "data.frame" | |
) | |
ranges_df <- df %>% | |
group_by(ID) %>% | |
summarize(dmin = min(Date), dmax = max(Date)) | |
alldays <- | |
ranges_df %>% group_by(ID) %>% do(., data.frame(Date = seq(.$dmin, .$dmax, by = '1 day'))) | |
imputed_df <- left_join(alldays, df) | |
imputed_df %>% group_by(ID) %>% summarize( | |
total = n(), | |
missing = sum(is.na(val)), | |
percent_missing = missing / total * 100 | |
) | |
alldays <- ranges_df %>% group_by(ID) %>% do(., data.frame( Date = seq(.$dmin,.$dmax, by = '1 day') )) | |
imputed_df <- left_join(alldays, df) | |
imputed_df %>% group_by(ID) %>% summarize(total=n(), missing=sum(is.na(val)), percent_missing=missing/total*100 ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment