Created
September 18, 2019 15:05
-
-
Save ground0state/10507cee9621091470c763b324bbfcee to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
!pip install -U torchvision | |
!wget http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz | |
!mkdir oxford-102 | |
!tar -xzvf 102flowers.tgz -C ./oxford-102 | |
import math | |
import numpy as np | |
import torch | |
from sklearn.model_selection import train_test_split | |
from torch import nn, optim | |
from torch.utils.data import DataLoader, TensorDataset | |
from tqdm import tqdm | |
import torchvision | |
from torchvision import transforms | |
from torchvision.datasets import ImageFolder | |
from torchvision.utils import save_image | |
img_data = ImageFolder('./oxford-102', transform=transforms.Compose([transforms.Resize(80), | |
transforms.CenterCrop(64), | |
transforms.ToTensor()])) | |
batch_size = 64 | |
img_loader = DataLoader(img_data, batch_size=batch_size, shuffle=True) | |
nz = 100 | |
ngf = 32 | |
class GNet(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.main = nn.Sequential( | |
nn.ConvTranspose2d(nz, ngf*8, 4, 1, 0, bias=False), | |
nn.BatchNorm2d(ngf*8), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(ngf*4), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(ngf*2), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(ngf), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False), | |
nn.Tanh() | |
) | |
def forward(self, x): | |
out = self.main(x) | |
return out | |
ndf = 32 | |
class DNet(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.main = nn.Sequential( | |
nn.Conv2d(3, ndf, 4, 2, 1, bias=False), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(ndf, ndf*2, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(ndf*2), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(ndf*2, ndf*4, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(ndf*4), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(ndf*4, ndf*8, 4, 2, 1, bias=False), | |
nn.BatchNorm2d(ndf*8), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(ndf*8, 1, 4, 1, 0, bias=False) | |
) | |
def forward(self, x): | |
out = self.main(x) | |
return out.squeeze() | |
d = DNet().to("cuda:0") | |
g = GNet().to("cuda:0") | |
opt_d = optim.Adam(d.parameters(), lr=0.0002, betas=(0.5, 0.999)) | |
opt_g = optim.Adam(g.parameters(), lr=0.0002, betas=(0.5, 0.999)) | |
ones = torch.ones(batch_size).to("cuda:0") | |
zeros = torch.zeros(batch_size).to("cuda:0") | |
loss_f = nn.BCEWithLogitsLoss() | |
# モニタリング用 | |
fixed_z = torch.randn(batch_size, nz, 1, 1).to("cuda:0") | |
from statistics import mean | |
def train_dcgan(g, d, opt_g, opt_d, loader): | |
log_loss_g = [] | |
log_loss_d = [] | |
for real_img, _ in tqdm(loader): | |
batch_len = len(real_img) | |
real_img = real_img.to("cuda:0") | |
# 偽画像をつくる | |
z = torch.randn(batch_len, nz, 1, 1).to("cuda:0") | |
fake_img = g(z) | |
# 偽画像の値を取り出す | |
fake_img_tensor = fake_img.detach() | |
# 偽画像に対するGの評価関数 | |
out = d(fake_img) | |
loss_g = loss_f(out, ones[:batch_len]) | |
log_loss_g.append(loss_g.item()) | |
# 微分とパラメータ更新 | |
d.zero_grad(), g.zero_grad() | |
loss_g.backward() | |
opt_g.step() | |
# 実画像に対するDの評価関数 | |
real_out = d(real_img) | |
loss_d_real = loss_f(real_out, ones[:batch_len]) | |
# 偽画像に対するDの評価関数 | |
fake_out = d(fake_img_tensor) | |
loss_d_fake = loss_f(fake_out, zeros[:batch_len]) | |
# 実偽の評価合計値 | |
loss_d = loss_d_real + loss_d_fake | |
log_loss_d.append(loss_d.item()) | |
# 微分とパラメータ更新 | |
d.zero_grad(), g.zero_grad() | |
loss_d.backward() | |
opt_d.step() | |
return mean(log_loss_g), mean(log_loss_d) | |
for epoch in range(300): | |
train_dcgan(g, d, opt_g, opt_d, img_loader) | |
if epoch % 10 == 0: | |
torch.save(g.state_dict(), "./g_{:03d}.prm".format(epoch), pickle_protocol=4) | |
torch.save(d.state_dict(), "./d_{:03d}.prm".format(epoch), pickle_protocol=4) | |
generated_img = g(fixed_z) | |
save_image(generated_img, "./{:03d}.jpg".format(epoch)) | |
from IPython.display import Image, display_jpeg | |
display_jpeg(Image("oxford-102/000.jpg")) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment