Created
August 19, 2019 15:43
-
-
Save ground0state/1e0e44cda58eeeddff9287a1fa999dc1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from tensorflow.python.keras.applications.vgg16 import VGG16 | |
from tensorflow.python.keras.models import Sequential | |
from tensorflow.python.keras.layers import Dropout, Flatten, Dense | |
from tensorflow.python.keras.optimizers import SGD | |
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator | |
from tensorflow.python.keras.applications.vgg16 import preprocess_input | |
from tensorflow.python.keras.callbacks import ModelCheckpoint, CSVLogger | |
import os | |
from datetime import datetime | |
import json | |
import pickle | |
import math | |
from utils import * | |
vgg16 = VGG16(include_top=False, input_shape=(224, 224, 3)) | |
def build_transfer_model(base_model): | |
model = Sequential(base_model.layers) | |
for layer in model.layers[:14]: | |
layer.trainable = False | |
model.add(Flatten()) | |
model.add(Dense(256, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(1, activation='sigmoid')) | |
return model | |
def build_transfer_model_functional(base_model): | |
x = base_model.output | |
x = Flatten()(x) | |
x = Dense(256, activation='relu')(x) | |
x = Dropout(0.5)(x) | |
prediction = Dense(1, activation='sigmoid')(x) | |
model = Model(inputs=base_model.input, outputs=prediction) | |
for layer in model.layers[:14]: | |
layer.trainable = False | |
return model | |
model = build_transfer_model(vgg16) | |
model.compile( | |
optimizer=SGD(lr=1e-4, momentum=0.9), | |
loss='binary_crossentropy', | |
metrics=['accuracy'] | |
) | |
print(model.summary()) | |
idg_train = ImageDataGenerator( | |
rescale=1/255, | |
shear_range=0.1, | |
zoom_range=0.1, | |
horizontal_flip=True, | |
preprocessing_function=preprocess_input | |
) | |
img_itr_train = idg_train.flow_from_directory(DATA_FOLDER+'img/shrine_temple/train', target_size=(224, 224), batch_size=16, class_mode='binary') | |
img_itr_validation = idg_train.flow_from_directory(DATA_FOLDER+'img/shrine_temple/validation', target_size=(224, 224), batch_size=16, class_mode='binary') | |
model_dir = os.path.join('models', datetime.now().strftime('%y%m%d_%H%M')) | |
os.makedirs(model_dir, exist_ok=True) | |
print('model_dir:', model_dir) | |
dir_weights = os.path.join(model_dir, 'weights') | |
os.makedirs(dir_weights, exist_ok=True) | |
model_json = os.path.join(model_dir, 'model.json') | |
with open(model_json, 'w') as f: | |
json.dump(model.to_json(), f) | |
model_classes = os.path.join(model_dir, 'classes.pkl') | |
with open(model_classes, 'wb') as f: | |
pickle.dump(img_itr_train.class_indices, f) | |
batch_size = 16 | |
steps_per_epoch = math.ceil(img_itr_train.samples/batch_size) | |
validation_steps = math.ceil(img_itr_validation.samples/batch_size) | |
cp_filepath = os.path.join(dir_weights, 'ep_{epoch:02d}_ls_{loss:.1f}.h5') | |
cp = ModelCheckpoint(cp_filepath, monitor='loss', verbose=0, save_best_only=False, | |
save_weights_only=True, mode='auto', save_freq=5) | |
csv_filepath = os.path.join(model_dir, 'loss.csv') | |
csv = CSVLogger(csv_filepath, append=True) | |
n_epoch = 10 | |
history = model.fit_generator(img_itr_train, | |
steps_per_epoch=steps_per_epoch, | |
epochs=n_epoch, | |
validation_data=img_itr_validation, | |
validation_steps=validation_steps, | |
callbacks=[cp, csv]) | |
test_data_dir = DATA_FOLDER+'img/shrine_temple/test/unknown' | |
x_test, true_labels = load_random_imgs(test_data_dir, seed=1) | |
x_test_preproc = preprocess_input(x_test.copy())/255 | |
probs = model.predict(x_test_preproc) | |
print(probs) | |
show_test_samples(x_test, probs, | |
img_itr_train.class_indices, | |
true_labels) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment