Created
August 27, 2019 15:51
-
-
Save ground0state/313ffc855e16f83679a93e2ed396b5e9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn, optim | |
from torch.utils.data import TensorDataset, Dataset, DataLoader | |
import tqdm | |
from torchvision.datasets import ImageFolder | |
from torchvision import transforms | |
!wget https://github.com/lucidfrontier45/PyTorch-Book/raw/master/data/taco_and_burrito.tar.gz | |
!tar -zxvf './taco_and_burrito.tar.gz' | |
train_imgs = ImageFolder("taco_and_burrito/train", | |
transform=transforms.Compose([ | |
transforms.RandomCrop(224), | |
transforms.ToTensor() | |
])) | |
test_imgs = ImageFolder("taco_and_burrito/test", | |
transform=transforms.Compose([ | |
transforms.RandomCrop(224), | |
transforms.ToTensor() | |
])) | |
train_loader = DataLoader(train_imgs, batch_size=32, shuffle=True) | |
test_loader = DataLoader(test_imgs, batch_size=32, shuffle=False) | |
from torchvision import models | |
net = models.resnet18(pretrained=True) | |
for p in net.parameters(): | |
p.require_grad = False | |
fc_input_dim = net.fc.in_features | |
net.fc = nn.Linear(fc_input_dim, 2) | |
def eval_net(net, data_loader, device="cpu"): | |
net.eval() | |
ys = [] | |
ypreds = [] | |
for x, y in data_loader: | |
x = x.to(device) | |
y = y.to(device) | |
with torch.no_grad(): | |
_, y_pred = net(x).max(1) | |
ys.append(y) | |
ypreds.append(y_pred) | |
ys = torch.cat(ys) | |
ypreds = torch.cat(ypreds) | |
acc = (ys==ypreds).float().sum() / len(ys) | |
return acc.item() | |
def train_net(net, train_loader, test_loader, only_fc=True, optimizer_cls=optim.Adam, loss_fn=nn.CrossEntropyLoss(), n_iter=10, device="cpu"): | |
train_losses = [] | |
train_acc = [] | |
val_acc = [] | |
if only_fc: | |
optimizer = optimizer_cls(net.fc.parameters()) | |
else: | |
optimizer = optimizer_cls(net.parameters()) | |
for epoch in range(n_iter): | |
running_loss = 0.0 | |
net.train() | |
n = 0 | |
n_acc = 0 | |
for i, (xx, yy) in tqdm.tqdm(enumerate(train_loader), total=len(train_loader)): | |
xx = xx.to(device) | |
yy = yy.to(device) | |
h = net(xx) | |
loss = loss_fn(h, yy) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
n += len(xx) | |
_, y_pred = h.max(1) | |
n_acc += (yy==y_pred).float().sum().item() | |
train_losses.append(running_loss / i) | |
train_acc.append(n_acc / n) | |
val_acc.append(eval_net(net, test_loader, device)) | |
print(epoch, train_losses[-1], train_acc[-1], val_acc[-1], flush=True) | |
net.to("cuda:0") | |
train_net(net, train_loader, test_loader, n_iter=20, device="cuda:0") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment