Last active
September 18, 2019 13:30
-
-
Save ground0state/3b483ac68c5026576e291af4ff09f7b5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
!pip install -U torchvision | |
# http://vis-www.cs.umass.edu/lfw/ | |
!wget http://vis-www.cs.umass.edu/lfw/lfw-deepfunneled.tgz | |
!tar -xzvf lfw-deepfunneled.tgz | |
!mkdir ./lfw-deepfunneled/train | |
!mv ./lfw-deepfunneled/[A-W]* ./lfw-deepfunneled/train | |
!mkdir ./lfw-deepfunneled/test | |
!mv ./lfw-deepfunneled/[X-Z]* ./lfw-deepfunneled/test | |
import math | |
import numpy as np | |
import torch | |
from sklearn.model_selection import train_test_split | |
from torch import nn, optim | |
from torch.utils.data import DataLoader, TensorDataset | |
from tqdm import tqdm | |
import torchvision | |
from torchvision import transforms | |
from torchvision.datasets import ImageFolder | |
class DownSizePairImageFolder(ImageFolder): | |
def __init__(self, root, transform=None, large_size=128, small_size=32, **kwds): | |
super().__init__(root, transform=transform, **kwds) | |
self.large_resizer = transforms.Resize(large_size) | |
self.small_resizer = transforms.Resize(small_size) | |
def __getitem__(self, index): | |
path, _ = self.imgs[index] | |
img = self.loader(path) | |
large_img = self.large_resizer(img) | |
small_img = self.small_resizer(img) | |
if self.transform is not None: | |
large_img = self.transform(large_img) | |
small_img = self.transform(small_img) | |
return small_img, large_img | |
train_data = DownSizePairImageFolder("./lfw-deepfunneled/train", transform=transforms.ToTensor()) | |
test_data = DownSizePairImageFolder("./lfw-deepfunneled/test", transform=transforms.ToTensor()) | |
batch_size = 16 | |
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=4) | |
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=4) | |
net = nn.Sequential( | |
nn.Conv2d(3, 256, 4, stride=2, padding=1), | |
nn.ReLU(), | |
nn.BatchNorm2d(256), | |
nn.Conv2d(256, 512, 4, stride=2, padding=1), | |
nn.ReLU(), | |
nn.BatchNorm2d(512), | |
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), | |
nn.ReLU(), | |
nn.BatchNorm2d(256), | |
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), | |
nn.ReLU(), | |
nn.BatchNorm2d(128), | |
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), | |
nn.ReLU(), | |
nn.BatchNorm2d(64), | |
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1) | |
) | |
def psnr(mse, max_v=1.0): | |
return 10*math.log10(max_v**2 / mse) | |
def eval_net(net, data_loader, device="cpu"): | |
net.eval() | |
ys = [] | |
ypreds = [] | |
for x, y in data_loader: | |
x = x.to(device) | |
y = y.to(device) | |
with torch.no_grad(): | |
y_pred = net(x) | |
ys.append(y) | |
ypreds.append(y_pred) | |
ys = torch.cat(ys) | |
ypreds = torch.cat(ypreds) | |
score = nn.functional.mse_loss(ypreds, ys).item() | |
return score | |
def train_net(net, train_loader, test_loader, optimizer_cls=optim.Adam, loss_fn=nn.MSELoss(), n_iter=10, device="cpu"): | |
train_losses = [] | |
train_acc = [] | |
val_acc = [] | |
optimizer = optimizer_cls(net.parameters()) | |
for epoch in range(n_iter): | |
running_loss = 0.0 | |
net.train() | |
n = 0 | |
score = 0 | |
for i, (xx, yy) in tqdm(enumerate(train_loader), total=len(train_loader)): | |
xx = xx.to(device) | |
yy = yy.to(device) | |
y_pred = net(xx) | |
loss = loss_fn(y_pred, yy) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
n += len(xx) | |
train_losses.append(running_loss / len(train_loader)) | |
val_acc.append(eval_net(net, test_loader, device)) | |
print(epoch, train_losses[-1], psnr(train_losses[-1]), psnr(val_acc[-1]), flush=True) | |
net.to("cuda:0") | |
train_net(net, train_loader, test_loader, device="cuda:0") | |
from torchvision.utils import save_image | |
random_test_loader = DataLoader(test_data, batch_size=4, shuffle=True) | |
it = iter(random_test_loader) | |
x, y = next(it) | |
bl_recon = torch.nn.functional.upsample(x, 128, mode="bilinear", align_corners=True) | |
yp = net(x.to("cuda:0")).to("cpu") | |
save_image(torch.cat([y, bl_recon, yp], 0), "cnn_upscale.jpg", nrow=4) | |
from IPython.display import Image, display_jpeg | |
display_jpeg(Image('cnn_upscale.jpg')) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment