Created
August 29, 2019 13:19
-
-
Save ground0state/4334439d6c671bb6ba0a1b69472ad768 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from keras.models import Sequential | |
from keras.layers import * | |
from keras.layers.recurrent import SimpleRNN | |
from keras.optimizers import * | |
from keras.callbacks import * | |
from sklearn.model_selection import * | |
from sklearn.utils import shuffle | |
!wget "https://www.analyticsvidhya.com/wp-content/uploads/2016/02/AirPassengers.csv" | |
df = pd.read_csv('AirPassengers.csv', index_col=0) | |
# fig, ax = plt.subplots(1, 1, figsize=(10, 5)) | |
# df.plot(ax=ax) | |
# ax.plot() | |
f_ori = df.values | |
f = f_ori / 600 # 1くらいにスケール | |
length_of_sequences = len(df) | |
width = 12 | |
data = [] | |
target = [] | |
for i in range(0, length_of_sequences - width + 1): | |
data.append(f[i: i + width]) | |
target.append(f[i + width - 1]) | |
X = np.array(data).reshape(-1, width, 1) | |
y = np.array(target).reshape(len(data), 1) | |
X_train, X_validation, y_train, y_validation = train_test_split(X, y, test_size=0.1) | |
from keras.layers.recurrent import SimpleRNN, LSTM | |
n_in = 1 | |
n_hidden = 300 | |
n_out = 1 | |
model = Sequential() | |
model.add(LSTM(n_hidden, input_shape=(width, n_in))) | |
model.add(Dense(n_out)) | |
model.add(Activation('linear')) | |
print(model.summary()) | |
epochs = 100 | |
batch_size = 1 | |
optimizer = Adam(lr=0.001) | |
model.compile(loss='mean_squared_error', optimizer=optimizer) | |
# early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) | |
model.fit(X_train, y_train, | |
batch_size=batch_size, | |
epochs=epochs, | |
validation_data=(X_validation, y_validation), | |
# callbacks=[early_stopping] | |
) | |
# widthブロックの1個目を取得 | |
Z = X[:1] # X[0]としないのはshapeを(1, width, 1)とするため | |
original = [f[i] for i in range(width)] | |
predicted = [None for i in range(width)] | |
# for i in range(length_of_sequences - width + 1): | |
# z_ = Z[-1:] # shape=(1, width, 1) | |
# y_ = model.predict(z_) | |
# sequence_ = np.concatenate((z_.reshape(width, n_in)[1:], y_), axis=0).reshape(1, width, n_in) | |
# Z = np.append(Z, sequence_, axis=0) | |
# predicted.append(y_.reshape(-1)) | |
z_ = Z[-1] # shape=(width, 1) | |
for i in range(length_of_sequences - width + 1): | |
y_ = model.predict(z_.reshape(1, width, 1)) | |
z_ = np.delete(z_, 0) | |
z_ = np.append(z_, y_) | |
predicted.append(y_.reshape(-1)) | |
plt.plot(original, linestyle='dashed', color='black') | |
plt.plot(predicted, color='black') | |
# training dataに対する予測 | |
y_ = model.predict(X) | |
predicted_ = np.array([None for i in range(width)]) | |
y_ = np.concatenate([predicted_, y_.reshape(-1)], axis=0) | |
plt.plot(original, linestyle='dashed', color='black') | |
plt.plot(y_, color='black') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment