Created
August 27, 2019 15:20
-
-
Save ground0state/5f2a775960c397d3c507120934308467 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn, optim | |
from torch.utils.data import TensorDataset, Dataset, DataLoader | |
import tqdm | |
from torchvision.datasets import FashionMNIST | |
from torchvision import transforms | |
fashion_mnist_train = FashionMNIST("data/FashionMNIST", train=True, download=True, transform=transforms.ToTensor()) | |
fashion_mnist_test = FashionMNIST("data/FashionMNIST", train=False, download=True, transform=transforms.ToTensor()) | |
batch_size = 128 | |
train_loader = DataLoader(fashion_mnist_train, batch_size=batch_size, shuffle=True) | |
test_loader = DataLoader(fashion_mnist_test, batch_size=batch_size, shuffle=False) | |
class FlattenLayer(nn.Module): | |
def forward(self, x): | |
sizes = x.size() | |
return x.view(sizes[0], -1) | |
conv_net = nn.Sequential( | |
nn.Conv2d(1, 32, 5), | |
nn.MaxPool2d(2), | |
nn.ReLU(), | |
nn.BatchNorm2d(32), | |
nn.Dropout2d(0.25), | |
nn.Conv2d(32, 64, 5), | |
nn.MaxPool2d(2), | |
nn.ReLU(), | |
nn.BatchNorm2d(64), | |
nn.Dropout2d(0.25), | |
FlattenLayer() | |
) | |
test_input = torch.ones(1, 1, 28, 28) | |
conv_output_size = conv_net(test_input).size()[-1] | |
mlp = nn.Sequential( | |
nn.Linear(conv_output_size, 200), | |
nn.ReLU(), | |
nn.BatchNorm1d(200), | |
nn.Dropout(0.25), | |
nn.Linear(200, 10) | |
) | |
net = nn.Sequential( | |
conv_net, | |
mlp | |
) | |
def eval_net(net, data_loader, device="cpu"): | |
net.eval() | |
ys = [] | |
ypreds = [] | |
for x, y in data_loader: | |
x = x.to(device) | |
y = y.to(device) | |
with torch.no_grad(): | |
_, y_pred = net(x).max(1) | |
ys.append(y) | |
ypreds.append(y_pred) | |
ys = torch.cat(ys) | |
ypreds = torch.cat(ypreds) | |
acc = (ys==ypreds).float().sum() / len(ys) | |
return acc.item() | |
def train_net(net, train_loader, test_loader, optimizer_cls=optim.Adam, loss_fn=nn.CrossEntropyLoss(), n_iter=10, device="cpu"): | |
train_losses = [] | |
train_acc = [] | |
val_acc = [] | |
optimizer = optimizer_cls(net.parameters()) | |
for epoch in range(n_iter): | |
running_loss = 0.0 | |
net.train() | |
n = 0 | |
n_acc = 0 | |
for i, (xx, yy) in tqdm.tqdm(enumerate(train_loader), total=len(train_loader)): | |
xx = xx.to(device) | |
yy = yy.to(device) | |
h = net(xx) | |
loss = loss_fn(h, yy) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
n += len(xx) | |
_, y_pred = h.max(1) | |
n_acc += (yy==y_pred).float().sum().item() | |
train_losses.append(running_loss / i) | |
train_acc.append(n_acc / n) | |
val_acc.append(eval_net(net, test_loader, device)) | |
print(epoch, train_losses[-1], train_acc[-1], val_acc[-1], flush=True) | |
net.to("cuda:0") | |
train_net(net, train_loader, test_loader, n_iter=20, device="cuda:0") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment