Last active
August 22, 2019 14:23
-
-
Save ground0state/c2076fcfe4a60b017ee7594b65621beb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import glob | |
import math | |
import random | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from tensorflow.python import keras | |
from tensorflow.python.keras import backend as K | |
from tensorflow.python.keras.models import Model, Sequential | |
from tensorflow.python.keras.layers import * | |
from tensorflow.python.keras.preprocessing.image import load_img, img_to_array, array_to_img, ImageDataGenerator | |
def drop_resolution(x, scale=3.0): | |
size = (x.shape[0], x.shape[1]) | |
small_size = (int(size[0]/scale), int(size[1]/scale)) | |
img = array_to_img(x) | |
small_img = img.resize(small_size, 3) | |
return img_to_array(small_img.resize(img.size, 3)) | |
def data_generator(data_dir, mode, scale=2.0, target_size=(200, 200), batch_size=32, shuffle=True): | |
for imgs in ImageDataGenerator().flow_from_directory( | |
directory=data_dir, | |
classes=[mode], | |
class_mode=None, | |
color_mode='rgb', | |
target_size=target_size, | |
batch_size=batch_size, | |
shuffle=shuffle | |
): | |
x = np.array([drop_resolution(img, scale) for img in imgs]) | |
yield x/255., imgs/255. | |
DATA_DIR = "" | |
N_TRAIN_DATA = 1000 | |
N_TEST_DATA = 100 | |
BATCH_SIZE = 32 | |
train_data_generator = data_generator(DATA_DIR, 'train', batch_size=BATCH_SIZE) | |
x_test, y_test = next(data_generator(DATA_DIR, 'test', batch_size=N_TEST_DATA, shuffle=False)) | |
inputs = Input(shape=(None, None, 3)) | |
x = Conv2D(filters=64, kernel_size=(9, 9), strides=(1, 1), activation='relu', padding='same')(inputs) | |
x = Conv2D(filters=32, kernel_size=(1, 1), strides=(1, 1), activation='relu', padding='same')(x) | |
outputs = Conv2D(filters=3, kernel_size=(5, 5), strides=(1, 1), padding='same')(x) | |
model = Model(inputs, outputs) | |
model.compile(optimizer='adam', loss='mse') | |
print(model.summary()) | |
# skip connection | |
# inputs = Input(shape=(None, None, 3), dtype='float') | |
# # Encoder | |
# conv1 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(inputs) | |
# conv1 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(conv1) | |
# conv2 = Conv2D(filters=64, kernel_size=(3, 3), strides=(2, 2), padding='same')(conv1) | |
# conv2 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(conv2) | |
# conv3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(2, 2), padding='same')(conv2) | |
# conv3 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(conv3) | |
# # Decoder | |
# deconv3 = Conv2DTranspose(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(conv3) | |
# deconv3 = Conv2DTranspose(filters=64, kernel_size=(3, 3), strides=(2, 2), padding='same')(deconv3) | |
# merge2 = Add()([deconv3, conv2]) | |
# deconv2 = Conv2DTranspose(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(merge2) | |
# deconv2 = Conv2DTranspose(filters=64, kernel_size=(3, 3), strides=(2, 2), padding='same')(deconv2) | |
# merge1 = Add()([deconv2, conv1]) | |
# deconv1 = Conv2DTranspose(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same')(merge1) | |
# deconv1 = Conv2DTranspose(filters=3, kernel_size=(3, 3), strides=(1, 1), padding='same')(deconv1) | |
# outputs = Add()([deconv1, inputs]) | |
# model = Model(inputs, outputs) | |
# model.compile(optimizer='adam', loss='mse') | |
# print(model.summary()) | |
def psnr(y_true, y_pred): | |
return -10*K.log( | |
K.mean(K.flatten((y_true - y_pred)**2)) | |
)/np.log(10) | |
model.compile(loss='mean_squared_error', optimizer='adam', metrics=[psnr]) | |
model.fit_generator(train_data_generator, validation_data=(x_test, y_test), steps_per_epoch=N_TRAIN_DATA//BATCH_SIZE, epochs=50) | |
pred = model.predict(x_test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment