Last active
November 27, 2017 20:34
-
-
Save groverpr/92dfbdc567dc5113aafeadcaf3ef904d to your computer and use it in GitHub Desktop.
Pseudo code for calculating prediction variance among trees
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Pseudo code: | |
def pred_ci(model, x_val, percentile = 95, n_pnt): | |
""" | |
x_val = validation input | |
percentile = required confidence level | |
model = random forest model | |
""" | |
allTree_preds = np.stack([t.predict(x_val) for t in model.estimators_], axis = 0) | |
err_down = np.percentile(allTree_preds, (100 - percentile) / 2.0 ,axis=0) | |
err_up = np.percentile(allTree_preds, 100- (100 - percentile) / 2.0 ,axis=0) | |
ci = err_up - err_down | |
yhat = model.predict(x_val) | |
y = y_val | |
df = pd.DataFrame() | |
df['down'] = err_down | |
df['up'] = err_up | |
df['y'] = y | |
df['yhat'] = yhat | |
df['deviation'] = (df['up'] - df['down'])/df['yhat'] | |
df.reset_index(inplace=True) | |
df_sorted = df.iloc[np.argsort(df['deviation'])[::-1]] | |
return df_sorted |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment