Last active
January 26, 2020 14:49
-
-
Save gtindo/563003b397c047f69e91e48484d9c52c to your computer and use it in GitHub Desktop.
Detect rectangular focus on picture
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import imutils | |
try: | |
import cv2 | |
except ImportError: | |
from cv2 import cv2 | |
def order_points(pts): | |
rect = np.zeros((4, 2), dtype="float32") | |
s = pts.sum(axis=1) | |
rect[0] = pts[np.argmin(s)] | |
rect[2] = pts[np.argmax(s)] | |
diff = np.diff(pts, axis=1) | |
rect[1] = pts[np.argmin(diff)] | |
rect[3] = pts[np.argmax(diff)] | |
return rect | |
def four_point_transform(img, pts): | |
rect = order_points(pts) | |
(tl, tr, br, bl) = rect | |
width_a = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) | |
width_b = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) | |
max_width = max(int(width_a), int(width_b)) | |
height_a = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) | |
height_b = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) | |
max_height = max(int(height_a), int(height_b)) | |
dst = np.array([ | |
[0, 0], | |
[max_width - 1, 0], | |
[max_width - 1, max_height - 1], | |
[0, max_height - 1]], dtype="float32") | |
matrix = cv2.getPerspectiveTransform(rect, dst) | |
warped = cv2.warpPerspective(img, matrix, (max_width, max_height)) | |
return warped | |
def main(): | |
img = cv2.imread("cni_2.jpg") | |
shape = np.shape(img) | |
ratio = shape[0] / shape[1] | |
height = 500 | |
width = int(float(height) / ratio) | |
img = cv2.resize(img, (height, width), interpolation=cv2.INTER_AREA) | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
gray = cv2.GaussianBlur(gray, (5, 5), 0) | |
edged = cv2.Canny(gray, 75, 200) | |
print("STEP 1: Edge Detection") | |
cv2.imshow("Image", img) | |
cv2.imshow("Edged", edged) | |
cnts = cv2.findContours(edged, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) | |
cnts = imutils.grab_contours(cnts) | |
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5] | |
screen_cnt = None | |
for c in cnts: | |
peri = cv2.arcLength(c, True) | |
approx = cv2.approxPolyDP(c, 0.02 * peri, True) | |
print(len(approx)) | |
if len(approx) == 4: | |
screen_cnt = approx | |
print("STEP 2: Find contours of card") | |
if screen_cnt is not None: | |
cv2.drawContours(img, [screen_cnt], -1, (0, 255, 0), 2) | |
cv2.imshow("Outline", img) | |
warped = four_point_transform(img, screen_cnt.reshape(4, 2) * ratio) | |
cv2.imshow("Warped", warped) | |
else: | |
print("Cannot find contours") | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment