Created
December 3, 2019 23:32
-
-
Save gtindo/f621db0ef932844c1b66e850d19547cb to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.models import Sequential | |
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization | |
from sklearn.model_selection import train_test_split | |
import matplotlib.pyplot as plt | |
import os | |
data = { | |
"filenames": [], | |
"categories": [], | |
} | |
DATA_PATH = 'data' | |
# Load Data | |
for file_name in os.listdir(DATA_PATH): | |
if os.path.isfile(file_name): | |
data["files"].append(file_name) | |
data["labels"].append(file_name.split(".")[0]) | |
df = pd.DataFrame(data) | |
# Normalize image | |
datagen = ImageDataGenerator(rescale=1./255) | |
# Split data with train and test set | |
train_df, test_df = train_test_split(df, test_size=0.2) | |
# make train and valid generator | |
train_generator = datagen.flow_from_dataframe( | |
train_df, DATA_PATH, | |
x_col='filenames', | |
y_col='categories', | |
target_size=(224, 224), | |
class_mode='categorical', | |
batch_size=32 | |
) | |
test_generator = datagen.flow_from_dataframe( | |
test_df, DATA_PATH, | |
x_col='categories', | |
y_col='categories', | |
target_size=(224, 224), | |
class_mode='categorical', | |
batch_size=32 | |
) | |
# Build Model | |
model = Sequential() | |
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=(224, 224, 3))) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Conv2D(64, (5, 5), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Conv2D(128, (5, 5), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Conv2D(256, (5, 5), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Conv2D(256, (5, 5), activation='relu')) | |
model.add(MaxPooling2D(pool_size=(2, 2))) | |
model.add(Flatten()) | |
model.add(Dense(512, activation='relu')) | |
model.add(Dense(2, activation='softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) | |
model.summary() | |
history = model.fit_generator( | |
train_generator, | |
epochs=20, | |
validation_data=test_generator, | |
validation_steps=len(test_generator), | |
steps_per_epoch=len(train_generator) | |
) | |
# Loss Plot | |
plt.plot(history.history['loss']) | |
plt.plot(history.history['val_loss']) | |
plt.title('Model loss') | |
plt.ylabel('Loss') | |
plt.xlabel('Epoch') | |
plt.legend(['Train', 'Test'], loc='upper left') | |
plt.show() | |
# Accuracy | |
plt.plot(history.history['acc']) | |
plt.plot(history.history['val_loss']) | |
plt.title('Model Accuracy') | |
plt.ylabel('Accuracy') | |
plt.xlabel('Epoch') | |
plt.legend(['Train', 'Test'], loc='upper left') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment