Created
July 19, 2017 04:14
-
-
Save guangningyu/d4d258ee8028dd7cb88ca6262c91c0b0 to your computer and use it in GitHub Desktop.
Reference: [Regression Tutorial with the Keras Deep Learning Library in Python](http://machinelearningmastery.com/regression-tutorial-keras-deep-learning-library-python/)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import urllib2 | |
import numpy as np | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.wrappers.scikit_learn import KerasRegressor | |
from sklearn.model_selection import cross_val_score | |
from sklearn.model_selection import KFold | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.pipeline import Pipeline | |
def load_data(): | |
X = [] | |
Y = [] | |
data_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data' | |
for line in urllib2.urlopen(data_url).readlines(): | |
line = map(float, line.split()) | |
X.append(line[0:13]) | |
Y.append(line[13]) | |
return X, Y | |
def basic_model(): | |
# create model | |
model = Sequential() | |
model.add(Dense(13, input_dim=13, kernel_initializer='normal', activation='relu')) | |
model.add(Dense(1, kernel_initializer='normal')) | |
# compile model | |
model.compile(loss='mean_squared_error', optimizer='adam') | |
return model | |
def deeper_model(): | |
# create model | |
model = Sequential() | |
model.add(Dense(13, kernel_initializer='normal', activation='relu', input_dim=13)) | |
model.add(Dense(6, kernel_initializer='normal', activation='relu')) | |
model.add(Dense(1, kernel_initializer='normal')) | |
# compile model | |
model.compile(loss='mean_squared_error', optimizer='adam') | |
return model | |
def wider_model(): | |
# create model | |
model = Sequential() | |
model.add(Dense(20, input_dim=13, kernel_initializer='normal', activation='relu')) | |
model.add(Dense(1, kernel_initializer='normal')) | |
# compile model | |
model.compile(loss='mean_squared_error', optimizer='adam') | |
return model | |
def train(X, Y, fn, standardize=True, seed=7): | |
np.random.seed(seed) | |
estimators = [] | |
if standardize: | |
estimators.append(('standardize', StandardScaler())) | |
estimators.append(('mlp', KerasRegressor(build_fn=fn, epochs=50, batch_size=5, verbose=0))) | |
pipeline = Pipeline(estimators) | |
kfold = KFold(n_splits=10, random_state=seed) | |
results = cross_val_score(pipeline, X, Y, cv=kfold) | |
print('Result: %.2f (%.2f) MSE' % (results.mean(), results.std())) | |
if __name__ == '__main__': | |
X, Y = load_data() | |
train(X, Y, fn=basic_model, standardize=False, seed=7) | |
train(X, Y, fn=basic_model, standardize=True, seed=7) | |
train(X, Y, fn=deeper_model, standardize=True, seed=7) | |
train(X, Y, fn=wider_model, standardize=True, seed=7) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment