Created
March 31, 2020 09:04
-
-
Save guanshaoheng/264da402371c8018c794f07b77ca8397 to your computer and use it in GitHub Desktop.
Newton-Raphson method for nonlinear functions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
(修正)牛顿拉夫逊迭代 求解非线性方程组 | |
""" | |
import numpy as np | |
import sympy as sp | |
class NewtonRaphsonSolver: | |
def __init__(self, p, x, f, tolerance=0.001): | |
self.p = p | |
self.x = x | |
self.f = f | |
self.k = p.jacobian(x) | |
self.tolerance = tolerance | |
self.k_inv = self.k.subs([(self.x[0], 1), (self.x[1], 2)]).inv() | |
self.ans = self.iterate(sp.Matrix([1, 0])) | |
def get_tangent(self, k, x): | |
return k.subs([(self.x[0], x[0]), (self.x[1], x[1])]) | |
def iterate(self, x): | |
r = self.f-self.p.subs([(self.x[0], x[0]), (self.x[1], x[1])]) | |
# Newton-Raphson iteration for nonlinear problem | |
# k = self.get_tangent(self.k, x) | |
# delta_x = k.inv()*r | |
# modified Newton-Raphson | |
delta_x = self.k_inv*r | |
if (delta_x.T*delta_x)[0] < self.tolerance*((x.T*x)[0]): | |
return delta_x+x | |
return self.iterate(x+delta_x) | |
x1, x2 = sp.symbols('x1 x2') | |
x = sp.Matrix([x1, x2]) | |
a = sp.Matrix([[1, 1], [x1, x2]]) | |
p = a*x | |
f = sp.Matrix([3, 9]) | |
solution = NewtonRaphsonSolver(p, x, f) | |
print(solution.ans) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment