-
-
Save gvaughn/912c9e5177787e180f00dc916254d0ff to your computer and use it in GitHub Desktop.
fizzbuzz with Axon (collaboration with Ian Warshak)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
defmodule Mlearning do | |
@moduledoc false | |
def mods(x) do | |
[rem(x, 3), rem(x, 5), rem(x, 15)] | |
end | |
def fizzbuzz(n) do | |
cond do | |
rem(n, 15) == 0 -> [0, 0, 1, 0] | |
rem(n, 3) == 0 -> [1, 0, 0, 0] | |
rem(n, 5) == 0 -> [0, 1, 0, 0] | |
true -> [0, 0, 0, 1] | |
end | |
end | |
def hello() do | |
data = | |
1..1000 | |
|> Stream.map(fn n -> | |
tensor = Nx.tensor([mods(n)]) | |
label = Nx.tensor([fizzbuzz(n)]) | |
{tensor, label} | |
end) | |
model = | |
Axon.input("input", shape: {nil, 3}) | |
|> Axon.dense(10, activation: :relu) | |
|> Axon.dense(4, activation: :softmax) | |
params = | |
model | |
|> Axon.Loop.trainer(:categorical_cross_entropy, Axon.Optimizers.adamw(0.005)) | |
|> Axon.Loop.metric(:accuracy) | |
|> Axon.Loop.run(data, %{}, epochs: 5, compiler: EXLA) | |
{_init_fn, predict_fn} = Axon.build(model) | |
guess = fn x -> | |
mod = Nx.tensor([mods(x)]) | |
case predict_fn.(params, mod) |> Nx.argmax() |> Nx.to_flat_list() do | |
[0] -> "fizz" | |
[1] -> "buzz" | |
[2] -> "fizzbuzz" | |
[3] -> "womp" | |
end | |
end | |
guess.(3) |> IO.inspect(label: "3") | |
guess.(5) |> IO.inspect(label: "5") | |
guess.(15) |> IO.inspect(label: "15") | |
guess.(16) |> IO.inspect(label: "16") | |
guess.(15_432_115) |> IO.inspect(label: "15,432,115") | |
:ok | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment