Created
July 20, 2021 21:47
-
-
Save gvyshnya/6bbb59a3314807f5de0a2982df98ca8b to your computer and use it in GitHub Desktop.
The source code of the PySpark script exporting data from a BigQuery dataset to a GCS bucket (reservoir)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark.sql.functions import * | |
from pyspark.context import SparkContext | |
from pyspark.sql.session import SparkSession | |
import sys | |
YES_TOKEN = "Yes" | |
sc = SparkContext.getOrCreate() | |
spark = SparkSession(sc) | |
gcp_project_id = 'your-project-id' # it has to be replaced with the real GCP Project ID | |
def export_a_bigquery_view ( | |
dataset, | |
entity_name, | |
gcs_output_bucket, | |
materialization_gcp_project_id, | |
materialization_dataset, | |
output_parquet, | |
is_partitioned, | |
is_full_reload, | |
since_date | |
): | |
table = "".join([gcp_project_id, '.', dataset, '.', entity_name]) | |
filter_value = f"createdAt > '{since_date}'" | |
df = spark.read.format("bigquery") \ | |
.option("viewsEnabled", True) \ | |
.option("viewMaterializationProject", materialization_gcp_project_id) \ | |
.option("viewMaterializationDataset", materialization_dataset) \ | |
.option("filter", filter_value) \ | |
.load(table) | |
spark_write_method = "" | |
if is_full_reload: | |
spark_write_method = "overwrite" | |
else: | |
# incremental update, doing append rather then overwrite | |
spark_write_method = "append" | |
if is_partitioned: | |
# create a partition field | |
df = df.withColumn("partitionDate", to_date(col('createdAt'))) | |
if output_parquet: | |
# write down as a partitioned parquet file | |
output_parquet_path = "".join( | |
[ | |
gcs_output_bucket, | |
'/parquet/', entity_name, '/' | |
]) | |
df.write.partitionBy("partitionDate").mode(spark_write_method).parquet(output_parquet_path) | |
else: | |
# write down as a partitioned JSON file | |
output_json_path = "".join( | |
[ | |
gcs_output_bucket, | |
'/json/', entity_name, '/' | |
]) | |
df.write.partitionBy("partitionDate").mode(spark_write_method).json(output_json_path) | |
else: | |
# write down a non-partitioned table/view | |
if output_parquet: | |
# write down as a partitioned parquet file | |
output_parquet_path = "".join( | |
[ | |
gcs_output_bucket, | |
'/parquet/', entity_name, '/' | |
]) | |
df.write.mode(spark_write_method).parquet(output_parquet_path) | |
else: | |
# write down as a partitioned JSON file | |
output_json_path = "".join( | |
[ | |
gcs_output_bucket, | |
'/json/', entity_name, '/' | |
]) | |
df.write.mode(spark_write_method).json(output_json_path) | |
def main(argv): | |
dataset = argv[0] | |
entity_name = argv[1] | |
gcs_output_bucket = argv[2] | |
materialization_gcp_project_id = argv[3] | |
materialization_dataset = argv[4] | |
parquet_flag = argv[5] | |
is_partitioned_flag = argv[6] | |
is_full_reload_flag = argv[7] | |
since_date = argv[8] | |
output_parquet = False | |
is_partitioned = False | |
is_full_reload = False | |
if parquet_flag == YES_TOKEN: | |
output_parquet = True | |
if is_partitioned_flag == YES_TOKEN: | |
is_partitioned = True | |
if is_full_reload_flag == YES_TOKEN: | |
is_full_reload_flag = True | |
export_a_bigquery_view ( | |
dataset, | |
entity_name, | |
gcs_output_bucket, | |
materialization_gcp_project_id, | |
materialization_dataset, | |
output_parquet, | |
is_partitioned, | |
is_full_reload, | |
since_date | |
) | |
if __name__ == "__main__": | |
main(sys.argv[1:]) | |
sc.stop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment