Created
May 8, 2017 00:08
-
-
Save gwding/bd5df2780df575749c4185460f2199d6 to your computer and use it in GitHub Desktop.
test pytorch memory usage
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import torch | |
import torch.utils | |
import torch.nn as nn | |
from torch.autograd import Variable | |
from torchvision import models | |
try: | |
import gpustat | |
except ImportError: | |
raise ImportError("pip install gpustat") | |
def show_memusage(device=0): | |
gpu_stats = gpustat.GPUStatCollection.new_query() | |
item = gpu_stats.jsonify()["gpus"][device] | |
print("{}/{}".format(item["memory.used"], item["memory.total"])) | |
device = 0 | |
show_memusage(device=device) | |
torch.cuda.set_device(device) | |
model = models.resnet101(pretrained=False) | |
model.cuda() | |
criterion = nn.CrossEntropyLoss() | |
volatile = False | |
show_memusage(device=device) | |
for ii in range(3): | |
inputs = torch.randn(20, 3, 224, 224) | |
labels = torch.LongTensor(range(20)) | |
inputs = inputs.cuda() | |
labels = labels.cuda() | |
inputs = Variable(inputs, volatile=volatile) | |
labels = Variable(labels, volatile=volatile) | |
print "before run model:", | |
show_memusage(device=device) | |
outputs = model(inputs) | |
print "after run model:", | |
show_memusage(device=device) | |
loss = criterion(outputs, labels) | |
if bool(int(sys.argv[1])): | |
print "before backward:", | |
show_memusage(device=device) | |
loss.backward() | |
print "after backward:", | |
show_memusage(device=device) | |
# del loss | |
# del outputs | |
# del inputs | |
# del labels | |
# show_memusage(device=device) | |
else: | |
del loss | |
del outputs | |
# # del inputs | |
# # del labels | |
# print "after delete:" | |
# show_memusage(device=device) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment