Last active
September 11, 2018 15:04
-
-
Save gweissman/8630754df8bdb3c0a1a39383cac8ba73 to your computer and use it in GitHub Desktop.
Network and diffusion process imulations
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
title: 'Aim 2: Simulated prelim data for Roybal Proposal' | |
author: "Gary E. Weissman, MD, MSHP" | |
date: "8/29/2018" | |
output: html_document | |
--- | |
```{r setup, include=FALSE} | |
knitr::opts_chunk$set(echo = TRUE) | |
library(igraph) | |
library(ggplot2) | |
library(ggnetwork) | |
library(patchwork) | |
library(netdiffuseR) | |
library(data.table) | |
set.seed(30) | |
``` | |
## Background | |
## Create scale-free networks for simulation | |
```{r make_graphs} | |
N <- 250 | |
power_law_vec <- c(1.25, 1.55, 1.75, 2.0) | |
sfn_list_raw <- lapply(power_law_vec, | |
function(p) sample_pa(N, p, directed = FALSE)) | |
# ------------- calculate importance measures | |
# pagerank measures | |
sfn_list_attr <- lapply(sfn_list_raw, | |
function(g) {V(g)$pr <- igraph::page_rank(g)$vector; g}) | |
# betweenness centrality | |
sfn_list_attr <- lapply(sfn_list_attr, | |
function(g) {V(g)$bc <- igraph::betweenness(g); g}) | |
``` | |
## Visualize network structures and importance properties | |
```{r view_graphs} | |
# ------------- custom plot function | |
# takes an igraph object and returns a ggplot object | |
plot_graph <- function(g, node_color = NULL) { | |
p <- ggplot(ggnetwork(g, | |
layout = "fruchtermanreingold", | |
arrow.gap = 0.01), | |
aes(x = x, y = y, xend = xend, yend = yend)) + | |
geom_nodes(size = 2, color = 'black', fill = 'white') + | |
geom_edges(size = 0.2, | |
arrow = arrow(length = unit(2, "pt"))) + | |
scale_color_continuous(low = 'lightgray', high = 'red') + | |
theme_blank() + | |
ggtitle(paste0('α = ',g$power)) | |
if (is.null(node_color)) { | |
p <- p + geom_nodes(size = 2) | |
} else if (node_color == 'pr') { | |
p <- p + geom_nodes(size = 2, aes(color = pr)) | |
} else if (node_color == 'bc') { | |
p <- p + geom_nodes(size = 2, aes(color = bc)) | |
} | |
return(p) | |
} | |
# ------------- make individual graph plots | |
sfn_plot_list_plain <- lapply(sfn_list_attr, plot_graph) | |
sfn_plot_list_pr <- lapply(sfn_list_attr, plot_graph, node_color = 'pr') | |
sfn_plot_list_bc <- lapply(sfn_list_attr, plot_graph, node_color = 'bc') | |
# ------------- make group graph plots | |
comp_plot_plain <- Reduce('+', sfn_plot_list_plain) | |
ggsave('p_comp_plain.png', comp_plot_plain) | |
comp_plot_pr <- Reduce('+', sfn_plot_list_pr) | |
ggsave('p_comp_pr.png', comp_plot_pr) | |
comp_plot_bc <- Reduce('+', sfn_plot_list_bc) | |
ggsave('p_comp_bc.png', comp_plot_bc) | |
``` | |
## Simulate diffusion process over networks | |
```{r sim_diff} | |
# ------------- custom diffusion function | |
run_diffusion_sim <- function(g, threshold, p_adopt = 0.05, | |
time_steps = 6, strategy = 'random', | |
n_sims = 1000, cpus = 6) { | |
seed_nodes <- NULL | |
n_seeds <- round(length(V(g)) * p_adopt) | |
if (strategy == 'random') { | |
seed_nodes <- sample(length(V(g)), n_seeds) | |
} | |
else if (strategy == 'central') { | |
vlist <- data.table(vid = V(g), bc = V(g)$bc)[order(-bc)] | |
seed_nodes <- vlist[1:n_seeds]$vid | |
} | |
diff_object <- rdiffnet_multiple(R = n_sims, | |
statistic = function(x) colSums(x$cumadopt), | |
t = time_steps, | |
seed.graph = as_adjacency_matrix(g), | |
threshold.dist = threshold, | |
seed.nodes = seed_nodes, | |
ncpus = cpus) | |
# return the cumulative adopters for each time step | |
results <- as.data.table(t(diff_object)) | |
setnames(results, paste0('t_',1:time_steps)) | |
results[, strategy := strategy] | |
results[, alpha := g$power] | |
results[, threshold := threshold] | |
return(results) | |
} | |
# ------------- run simulations | |
threshold_list <- c(0.1,0.25, 0.5) | |
random_strategy_data <- lapply(threshold_list, function(thr) { | |
lapply(sfn_list_attr, function(g) { | |
run_diffusion_sim(g, thr) | |
}) | |
}) | |
targeted_strategy_data <- lapply(threshold_list, function(thr) { | |
lapply(sfn_list_attr, function(g) { | |
run_diffusion_sim(g, thr, strategy = 'central') | |
}) | |
}) | |
# ------------- collect data | |
random_strategy_all <- rbindlist(lapply(random_strategy_data, rbindlist)) | |
targeted_strategy_all <- rbindlist(lapply(targeted_strategy_data, rbindlist)) | |
``` | |
## Visualize differences in diffusion patterns over networks | |
```{r net_viz} | |
# ------------- organize data | |
sim_data <- rbind(random_strategy_all, targeted_strategy_all) | |
sim_data_m <- melt(sim_data, id.vars = c('threshold','alpha','strategy'), | |
variable.factor = FALSE) | |
sim_data_m[, time := as.numeric(substr(variable,3,nchar(variable)))] | |
sim_data_m[, `influence threshold` := as.factor(threshold)] | |
# ------------- get summary statistics | |
sim_data_summ <- sim_data_m[, .(q25 = quantile(value, 0.25), | |
q50 = quantile(value, 0.50), | |
q75 = quantile(value, 0.75)), | |
by = .(`influence threshold`, alpha, strategy, time)] | |
# ------------- plot | |
p_res <- ggplot(sim_data_summ, aes(time, q50, | |
linetype = strategy, | |
color = `influence threshold`)) + | |
geom_line(size = 0.3) + | |
geom_errorbar(aes(ymin = q25, ymax = q75), width = 0.1) + | |
facet_wrap(~alpha, ncol = 2) + | |
theme_bw() + | |
scale_y_continuous('adopters') + | |
scale_x_continuous('months') + | |
theme(legend.position = 'bottom') | |
ggsave('p_res.png',p_res) | |
``` | |
## Test for differences between strategies | |
```{r test_diff} | |
# get p-values for each comparison of random vs central strategy | |
# adjust for multiple comparisons (bonferroni) | |
sim_data_m[time > 1, t.test(.SD[strategy == 'random']$value, | |
.SD[strategy == 'central']$value), | |
by = .(alpha, threshold, time)]$p.value * 120 | |
``` | |
## Identify communities | |
```{r comm} | |
op <- par() | |
png('p_comm.png') | |
par(mfrow=c(2,2)) | |
lapply(sfn_list_attr, | |
function(g) { | |
plot( | |
edge.betweenness.community(g), | |
g, | |
vertex.label = NA, | |
vertex.size = 1.9, | |
main = paste0('α = ', g$power) | |
) | |
}) | |
dev.off() | |
par(op) | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment