Created
October 30, 2019 18:20
-
-
Save gxercavins/ec57df7374cf69f499878877e2133de4 to your computer and use it in GitHub Desktop.
SO question 58545759
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import datetime, re, time | |
from airflow import models | |
from airflow.contrib.operators.dataflow_operator import DataFlowPythonOperator, GoogleCloudBucketHelper | |
from airflow.contrib.hooks.gcp_dataflow_hook import DataFlowHook | |
from airflow.models import BaseOperator | |
from typing import Dict, List | |
JOB_NAME='dataflow-python3' | |
PROJECT='PROJECT-ID' | |
BUCKET='BUCKET-NAME' | |
yesterday = datetime.datetime.combine( | |
datetime.datetime.today() - datetime.timedelta(1), | |
datetime.datetime.min.time()) | |
default_args = { | |
'start_date': yesterday, | |
'email_on_failure': False, | |
'email_on_retry': False, | |
'retries': 0, | |
'retry_delay': datetime.timedelta(minutes=1), | |
'dataflow_default_options': { | |
'project': PROJECT, | |
'tempLocation': 'gs://{}/temp/'.format(BUCKET), | |
'stagingLocation': 'gs://{}/staging/'.format(BUCKET) | |
} | |
} | |
class DataFlow3Hook(DataFlowHook): | |
def start_python_dataflow( | |
self, | |
job_name: str, | |
variables: Dict, | |
dataflow: str, | |
py_options: List[str], | |
append_job_name: bool = True, | |
py_interpreter: str = "python3" | |
): | |
name = self._build_dataflow_job_name(job_name, append_job_name) | |
variables['job_name'] = name | |
def label_formatter(labels_dict): | |
return ['--labels={}={}'.format(key, value) | |
for key, value in labels_dict.items()] | |
self._start_dataflow(variables, name, [py_interpreter] + py_options + [dataflow], | |
label_formatter) | |
class DataFlowPython3Operator(DataFlowPythonOperator): | |
def execute(self, context): | |
"""Execute the python dataflow job.""" | |
bucket_helper = GoogleCloudBucketHelper( | |
self.gcp_conn_id, self.delegate_to) | |
self.py_file = bucket_helper.google_cloud_to_local(self.py_file) | |
hook = DataFlow3Hook(gcp_conn_id=self.gcp_conn_id, | |
delegate_to=self.delegate_to, | |
poll_sleep=self.poll_sleep) | |
dataflow_options = self.dataflow_default_options.copy() | |
dataflow_options.update(self.options) | |
# Convert argument names from lowerCamelCase to snake case. | |
camel_to_snake = lambda name: re.sub( | |
r'[A-Z]', lambda x: '_' + x.group(0).lower(), name) | |
formatted_options = {camel_to_snake(key): dataflow_options[key] | |
for key in dataflow_options} | |
hook.start_python_dataflow( | |
self.job_name, formatted_options, | |
self.py_file, self.py_options, py_interpreter="python3") | |
with models.DAG( | |
'dataflow_python3', | |
schedule_interval=datetime.timedelta(days=1), | |
default_args=default_args) as dag: | |
task = DataFlowPython3Operator( | |
py_file='/home/airflow/gcs/data/main.py', | |
task_id=JOB_NAME, | |
dag=dag) | |
task |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment