Last active
February 24, 2018 21:02
-
-
Save h3ct0r/8076d4a3b9c431adeb763fe4bd3ea782 to your computer and use it in GitHub Desktop.
Check for 'bad' or 'slow' nodes on paths using a metric for every path. Python + networkx.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import networkx as nx | |
import matplotlib.pyplot as plt | |
import random | |
import numpy as np | |
def outliers_modified_z_score(ys): | |
threshold = 1.5 | |
median_y = np.median(ys) | |
median_absolute_deviation_y = np.median([np.abs(y - median_y) for y in ys]) | |
modified_z_scores = [0.6745 * (y - median_y) / median_absolute_deviation_y for y in ys] | |
print "Using threshold:", threshold | |
print "Z scores:", modified_z_scores | |
return np.flatnonzero(np.array(modified_z_scores) > threshold) | |
def get_paths_with_retransmits(G, hosts_from, hosts_to, problematic_nodes, get_simple=False): | |
generated_path_list = [] | |
for h1 in hosts_from: | |
for h2 in hosts_to: | |
if h1 == h2: | |
continue | |
if get_simple: | |
all_paths = nx.all_simple_paths(G, h1, h2) | |
else: | |
all_paths = nx.all_shortest_paths(G, h1, h2) | |
for path in all_paths: | |
retransmits = random.randint(0, 2) | |
if len(set(path).intersection(set(problematic_nodes))) > 0: | |
retransmits = random.randint(2, 6) | |
generated_path_list.append({ | |
'src': h1, | |
'dst': h2, | |
'path': path, | |
'retransmits': retransmits | |
}) | |
return generated_path_list | |
def get_problematic_nodes(event_list): | |
numerator = dict() | |
denominator = dict() | |
for event in event_list: | |
for node in event['path']: | |
try: | |
numerator[node] += event['retransmits'] | |
denominator[node] += 1 | |
except KeyError: | |
numerator[node] = event['retransmits'] | |
denominator[node] = 1 | |
node_score = {node : numerator[node] / float(denominator[node]) for node in numerator.keys()} | |
# natively sort tuples by first element | |
d_view = [(v,k) for k,v in node_score.iteritems() ] | |
d_view.sort(reverse=True) | |
min_v = min(node_score.values()) | |
max_v = max(node_score.values()) | |
print "Heuristic score for every node:" | |
for v, k in d_view: | |
print "Node:{}\tscore:{:.3f}\tnormalized:{:.3f}".format(k, v, (v - min_v)/float(max_v - min_v)) | |
print "" | |
outliers = outliers_modified_z_score([v[0] for v in d_view]) | |
if len(outliers) > 0: | |
print "\n**Critical outlier nodes:**" | |
for i in outliers: | |
print "Node:{}".format(d_view[i][1]) | |
else: | |
print "No critical outliers were found" | |
def main(): | |
# Recreating graph in: | |
# https://raw.githubusercontent.com/cwoodfield/hackathon71/master/hackathon_lab_diagram_asns.png | |
edge_list = [ | |
('host1', 'leaf1'), | |
('host2', 'leaf2'), | |
('leaf1', 'spine1'), | |
('leaf1', 'spine2'), | |
('leaf2', 'spine1'), | |
('leaf2', 'spine2'), | |
('spine1', 'vmx8'), | |
('spine1', 'vmx9'), | |
('spine2', 'vmx8'), | |
('spine2', 'vmx9'), | |
('vmx8', 'vmx7'), | |
('vmx9', 'vmx7'), | |
('spine3', 'vmx8'), | |
('spine3', 'vmx9'), | |
('spine4', 'vmx8'), | |
('spine4', 'vmx9'), | |
('leaf3', 'spine3'), | |
('leaf3', 'spine4'), | |
('leaf4', 'spine3'), | |
('leaf4', 'spine4'), | |
('host3', 'leaf3'), | |
('host4', 'leaf4'), | |
] | |
# prepare graph | |
G = nx.Graph() | |
for e in edge_list: | |
G.add_edge(*e) | |
# define problematic nodes | |
simulated_bad_nodes = ['vmx7'] | |
# hosts belonging to edge_list to generate the paths | |
# those nodes will be used as 'src' and 'dst' to the paths | |
hosts = ['host1', 'host2', 'host3', 'host4'] | |
# generate the paths. Paths that touches problematic nodes have more retransmits | |
test_path_list = get_paths_with_retransmits(G, hosts, hosts, simulated_bad_nodes, get_simple=True) | |
# print the nodes by problematic importance | |
get_problematic_nodes(test_path_list) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment