Skip to content

Instantly share code, notes, and snippets.

@hackintoshrao
Created July 20, 2017 07:12
Show Gist options
  • Select an option

  • Save hackintoshrao/3703f73f13efe4c741f91abdccaf1dd0 to your computer and use it in GitHub Desktop.

Select an option

Save hackintoshrao/3703f73f13efe4c741f91abdccaf1dd0 to your computer and use it in GitHub Desktop.
Kalman filter update and prediction
// Write a function 'filter()' that implements a multi-
// dimensional Kalman Filter for the example given
//============================================================================
#include <iostream>
#include "Dense"
#include <vector>
using namespace std;
using namespace Eigen;
//Kalman Filter variables
VectorXd x; // object state
MatrixXd P; // object covariance matrix
VectorXd u; // external motion
MatrixXd F; // state transition matrix
MatrixXd H; // measurement matrix
MatrixXd R; // measurement covariance matrix
MatrixXd I; // Identity matrix
MatrixXd Q; // process covariance matrix
MatrixXd e;
MatrixXd S;
MatrixXd K;
vector<VectorXd> measurements;
void filter(VectorXd &x, MatrixXd &P);
int main() {
/**
* Code used as example to work with Eigen matrices
*/
// //you can create a vertical vector of two elements with a command like this
// VectorXd my_vector(2);
// //you can use the so called comma initializer to set all the coefficients to some values
// my_vector << 10, 20;
//
//
// //and you can use the cout command to print out the vector
// cout << my_vector << endl;
//
//
// //the matrices can be created in the same way.
// //For example, This is an initialization of a 2 by 2 matrix
// //with the values 1, 2, 3, and 4
// MatrixXd my_matrix(2,2);
// my_matrix << 1, 2,
// 3, 4;
// cout << my_matrix << endl;
//
//
// //you can use the same comma initializer or you can set each matrix value explicitly
// // For example that's how we can change the matrix elements in the second row
// my_matrix(1,0) = 11; //second row, first column
// my_matrix(1,1) = 12; //second row, second column
// cout << my_matrix << endl;
//
//
// //Also, you can compute the transpose of a matrix with the following command
// MatrixXd my_matrix_t = my_matrix.transpose();
// cout << my_matrix_t << endl;
//
//
// //And here is how you can get the matrix inverse
// MatrixXd my_matrix_i = my_matrix.inverse();
// cout << my_matrix_i << endl;
//
//
// //For multiplying the matrix m with the vector b you can write this in one line as let’s say matrix c equals m times v.
// //
// MatrixXd another_matrix;
// another_matrix = my_matrix*my_vector;
// cout << another_matrix << endl;
//design the KF with 1D motion
x = VectorXd(2);
x << 0, 0;
P = MatrixXd(2, 2);
P << 1000, 0, 0, 1000;
u = VectorXd(2);
u << 0, 0;
F = MatrixXd(2, 2);
F << 1, 1, 0, 1;
H = MatrixXd(1, 2);
H << 1, 0;
R = MatrixXd(1, 1);
R << 1;
I = MatrixXd::Identity(2, 2);
Q = MatrixXd(2, 2);
Q << 0, 0, 0, 0;
//create a list of measurements
VectorXd single_meas(1);
single_meas << 1;
measurements.push_back(single_meas);
single_meas << 2;
measurements.push_back(single_meas);
single_meas << 3;
measurements.push_back(single_meas);
//call Kalman filter algorithm
filter(x, P);
return 0;
}
void filter(VectorXd &x, MatrixXd &P) {
for (unsigned int n = 0; n < measurements.size(); ++n) {
VectorXd z = measurements[n];
//YOUR CODE HERE
// KF Measurement update step
e = MatrixXd(1,1);
e = z - H * x ;
S = MatrixXd(1,1);
S = H * P * H.transpose() + R ;
K = MatrixXd(2,1);
K = P * H.transpose() * S.inverse() ;
x = x + (K * e) ;
P = (I - (K*H)) * P ;
// new state
// KF Prediction step
x = F * x + u ;
P = F * P * F.transpose() ;
std::cout << "x=" << std::endl << x << std::endl;
std::cout << "P=" << std::endl << P << std::endl;
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment