Created
November 10, 2018 09:19
-
-
Save hadifar/37dc45e7821c97d01a6ff098ed4b4607 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
tf.enable_eager_execution() | |
X_raw = np.array([2013, 2014, 2015, 2016, 2017], dtype=np.float32) | |
y_raw = np.array([12000, 14000, 15000, 16500, 17500], dtype=np.float32) | |
X = (X_raw - X_raw.min()) / (X_raw.max() - X_raw.min()) | |
y = (y_raw - y_raw.min()) / (y_raw.max() - y_raw.min()) | |
X = tf.constant(X) | |
y = tf.constant(y) | |
a = tf.get_variable(name='a', initializer=0.) | |
b = tf.get_variable(name='b', initializer=0.) | |
epoch = 10000 | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-3) | |
for e in range(epoch): | |
with tf.GradientTape() as tape: | |
y_pred = a * X + b | |
cost = 0.5 * tf.reduce_sum(tf.square(y_pred - y)) | |
grads = tape.gradient(cost, [a, b]) | |
optimizer.apply_gradients(grads_and_vars=zip(grads, [a, b])) | |
print(a.numpy(), b.numpy()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment