Skip to content

Instantly share code, notes, and snippets.

@hadifar
Created December 2, 2018 16:49
Show Gist options
  • Save hadifar/55acb249210596a286f661a90d6990fc to your computer and use it in GitHub Desktop.
Save hadifar/55acb249210596a286f661a90d6990fc to your computer and use it in GitHub Desktop.
app = Flask(__name__)
cors = CORS(app)
@app.route("/api/predict", methods=['POST'])
def predict():
start = time.time()
data = request.data.decode("utf-8")
if data == "":
params = request.form
x_in = json.loads(params['x'])
else:
params = json.loads(data)
x_in = params['x']
# normalize input data!
x_in = np.array([[(x_in - 2013) / (2017 - 2013)]])
# Tensorflow part
y_out = session.run([y], feed_dict={x: x_in})
# normalize output data!
y_out = (float(y_out[0]) * (17500 - 12000)) + 12000
json_data = json.dumps({'y': y_out})
print("Time spent handling the request: %f" % (time.time() - start))
return json_data
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment