Created
November 20, 2018 15:10
-
-
Save hadifar/6cc7e3d6b5268f669f3db7b02d259f8a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
from collections import deque | |
import gym | |
import numpy as np | |
import tensorflow as tf | |
tf.enable_eager_execution() | |
num_episodes = 3000 | |
max_len_episode = 2000 | |
num_exploration_episodes = 100 | |
batch_size = 32 | |
learning_rate = 1e-3 | |
gamma = .99 | |
initial_epsilon = 1. | |
final_epsilon = 0.01 | |
class QNetwork(tf.keras.Model): | |
def __init__(self, n_action_space=3): | |
super().__init__() | |
self.dense1 = tf.keras.layers.Dense(units=100, activation=tf.nn.relu) | |
self.dense2 = tf.keras.layers.Dense(units=100, activation=tf.nn.relu) | |
self.dense3 = tf.keras.layers.Dense(units=n_action_space) | |
def call(self, inputs): | |
x = self.dense1(inputs) | |
x = self.dense2(x) | |
x = self.dense3(x) | |
return x | |
def predict(self, inputs): | |
q_values = self(inputs) | |
return tf.argmax(q_values, axis=-1) | |
env = gym.make('MountainCar-v0') | |
model = QNetwork(n_action_space=env.action_space.n) | |
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) | |
replay_buffer = deque(maxlen=100000) | |
epsilon = initial_epsilon | |
for episode_id in range(num_episodes): | |
state = env.reset() | |
epsilon = max(initial_epsilon * (num_exploration_episodes - episode_id) / num_exploration_episodes, final_epsilon) | |
for t in range(max_len_episode): | |
env.render() | |
if random.random() < epsilon: | |
action = env.action_space.sample() | |
else: | |
action = model.predict(tf.constant(np.expand_dims(state, axis=0), dtype=tf.float32)).numpy()[0] | |
next_state, reward, done, info = env.step(action) | |
reward = -10. if done else reward | |
replay_buffer.append((state, action, reward, next_state, 1 if done else 0)) | |
state = next_state | |
if done: | |
break | |
if len(replay_buffer) >= batch_size: | |
batch_state, batch_action, batch_reward, batch_next_state, batch_done = \ | |
zip(*random.sample(replay_buffer, batch_size)) | |
batch_state, batch_reward, batch_next_state, batch_done = \ | |
[np.array(a, dtype=np.float32) for a in [batch_state, batch_reward, batch_next_state, batch_done]] | |
batch_action = np.array(batch_action, dtype=np.int32) | |
q_value = model(tf.constant(batch_next_state, dtype=tf.float32)) | |
y = batch_reward + (gamma * tf.reduce_max(q_value, axis=1)) * (1 - batch_done) | |
batch_action = tf.cast(batch_action, tf.int32) | |
with tf.GradientTape() as tape: | |
pred = tf.reduce_sum(model(tf.constant(batch_state)) * | |
tf.one_hot(batch_action, depth=3), axis=1) | |
loss = tf.losses.mean_squared_error(labels=y, predictions=pred) | |
grads = tape.gradient(loss, model.variables) | |
optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment