Last active
October 28, 2020 09:12
-
-
Save hadifar/8d2be5b51dc81fbc2418acfe5a41ab57 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import * | |
import sys, logging | |
print('cuda available? ', torch.cuda.is_available()) | |
print('how many gpus?', torch.cuda.device_count()) | |
logging.root.handlers = [] | |
logging.basicConfig(level="INFO", format='%(asctime)s:%(levelname)s: %(message)s', stream=sys.stdout) | |
logger = logging.getLogger(__name__) | |
logger.info('hello') | |
def check_memory(): | |
logger.info('GPU memory: %.1f' % (torch.cuda.memory_allocated() // 1024 ** 2)) | |
device = torch.device('cuda') | |
torch.cuda.empty_cache() | |
check_memory() | |
model = XLMRobertaForSequenceClassification.from_pretrained('xlm-roberta-large') | |
logger.info('moving model to GPU') | |
gpu_model = model.to(device) | |
print('-' * 50) | |
print('single model memory usage') | |
check_memory() # the model is 2.135 Gb | |
print('-' * 50) | |
def run_transformers(x): | |
# x.requires_grad=False | |
check_memory() | |
logger.info('moving tensors to GPU') | |
x = x.to(device) | |
check_memory() | |
logger.info('Running bert forward on x') | |
yhat = gpu_model(x) | |
check_memory() | |
logger.info(f'yhat[0].requires_grad = {yhat[0].requires_grad} . Detaching yhat') | |
yhat = yhat[0].detach() | |
logger.info(f'x shape = {x.shape}, yhat.shape = {yhat.shape}') | |
check_memory() | |
for b in [1, 2, 4, 8, 16, 32]: | |
print('-' * 50) | |
torch.cuda.empty_cache() | |
check_memory() | |
print('batch size {} analysis'.format(b)) | |
x = torch.randint(low=1000, high=30000, size=(b, 512)) | |
run_transformers(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment