Created
June 22, 2012 14:06
-
-
Save hadley/2972907 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Inspired by Andreas Buja's code from | |
# http://stat.wharton.upenn.edu/~buja/STAT-101/src-probability.R | |
rv <- function(x, probs = NULL) { | |
if (is.null(probs)) { | |
probs <- rep(1, length(x)) / length(x) | |
} | |
vals <- as.numeric(x) | |
ord <- order(vals) | |
vals <- vals[ord] | |
probs <- probs[ord] | |
# Simplify by summing probabilities with equal x's | |
group <- cumsum(c(TRUE, vals[-1] != vals[-length(x)])) | |
vals <- as.vector(tapply(as.numeric(vals), group, "[", 1)) | |
probs <- as.vector(tapply(probs, group, sum)) | |
structure(vals, probs = probs, class = "rv") | |
} | |
is.rv <- function(x) inherits(x, "rv") | |
probs <- function(x) attr(x, "probs") | |
print.rv <- function(x) { | |
X <- format(x, digits = 3) | |
P <- format(probs(x), digits = 3) | |
out <- cbind(X = X, "P(X)" = P) | |
rownames(out) <- rep("", nrow(out)) | |
print(out, quote = FALSE) | |
} | |
Ops.rv <- function(e1, e2) { | |
# Assume that two random variables are independent | |
if (is.rv(e1) && is.rv(e2)) { | |
vals <- as.vector(outer(e1, e2, .Generic)) | |
probs <- as.vector(outer(probs(e1), probs(e2), "*")) | |
return(rv(vals, probs)) | |
} | |
# Figure out which one is the rv, and which one is the number | |
if (is.rv(e1)) { | |
rv <- e1 | |
n <- e2 | |
} else { | |
rv <- e2 | |
n <- e1 | |
} | |
rv(NextMethod(), probs(rv)) | |
} | |
"[.rv" <- function(x, i, ...) { | |
rv(as.numeric(x)[i], prop.table(probs(x)[i])) | |
} | |
Math.rv <- function(x, ...) { | |
rv(NextMethod(), probs(x)) | |
} | |
plot.rv <- function(x, ...) { | |
name <- deparse(substitute(x)) | |
ylim <- range(0, probs(x)) | |
plot(as.numeric(x), probs(x), type = "h", ylim = ylim, | |
xlab = name, ylab = paste0("P(", name, ")")) | |
points(as.numeric(x), probs(x), pch = 20) | |
abline(h = 0, col = "gray") | |
} | |
P <- function(x) { | |
stopifnot(is.logical(x)) | |
sum(probs(x)[x]) | |
} | |
E <- function(x) sum(as.numeric(x) * probs(x)) | |
# Subtle error: | |
# E <- function(x) sum(x * probs(x)) | |
VAR <- function(x) E((x - E(x)) ^ 2) | |
# Var <- function(x) E(x - E(x)) ^ 2 | |
SD <- function(x) sqrt(VAR(x)) | |
SKEW <- function(x) E((x - E(x)) ^ 3) / SD(x) ^ 3 | |
# Simulate n random numbers from the rv | |
rsim <- function(x, n) { | |
sample(x, n, prob = probs(x), replace = TRUE) | |
} | |
# rif(dice > 3, -1, 5) | |
# How could you extend it so that you could do: | |
# rif(dice > 3, 2 * dice, -4) | |
rif <- function(x, yes, no) { | |
stopifnot(is.numeric(yes), length(yes) == 1) | |
stopifnot(is.numeric(no), length(no) == 1) | |
rv(c(no, yes), probs(x)) | |
} | |
# Standardise by subtracting off expectation and dividing by sd | |
# (often called a z score) | |
Z <- function(x) (x - E(x)) / SD(x) | |
# coin <- rv(c(0, 1)) | |
# dice <- rv(1:6) | |
# plot(dice) | |
# plot(dice + dice) | |
# P(dice > dice) | |
# P(dice < dice) | |
# | |
# # Flip a coin, and if heads roll a dice to determine your winnings | |
# E(coin * dice) | |
# plot(coin * dice) | |
# | |
# loaded <- rv(1:6, prop.table(c(1,1,1,1,2,4))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment