Last active
February 27, 2017 14:12
-
-
Save hagerty/5e1fb0eef76553f7d26dfb4d136b3443 to your computer and use it in GitHub Desktop.
Alternative architecture for CosmiQNet
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
with tf.device(gpu): | |
# Generator | |
x8 = tf.placeholder(tf.float32, shape=[None, FLAGS.ws, FLAGS.ws, 8]) | |
x3 = tf.placeholder(tf.float32, shape=[None, scale * FLAGS.ws, scale * FLAGS.ws, 3]) | |
label_distance = tf.placeholder(tf.float32, shape=[None, FLAGS.ws, FLAGS.ws, 1]) | |
for i in range(layers): | |
alpha[i] = tf.Variable(0.9, name='alpha_' + str(i)) | |
beta[i] = tf.maximum( 0.0 , tf.minimum ( 1.0 , alpha[i] ), name='beta_'+str(i)) | |
bi[i] = tf.Variable(tf.constant(0.0,shape=[FLAGS.filters]), name='bi_'+str(i)) | |
bo[i] = tf.Variable(tf.constant(0.0,shape=[FLAGS.filters]), name='bo_'+str(i)) | |
Wo[i] = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,1,FLAGS.filters], stddev=0.1), name='Wo_'+str(i)) # | |
Wi3[i] = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,3,FLAGS.filters], stddev=0.1), name='Wi_'+str(i)+'l3') | |
Wi8[i] = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,8,FLAGS.filters], stddev=0.1), name='Wi_'+str(i)+'l8') | |
z3[i] = tf.nn.conv2d( x3, Wi3[i], strides=[1,scale,scale,1], padding='SAME') | |
z8[i] = tf.nn.conv2d( x8, Wi8[i], strides=[1,1,1,1], padding='SAME') | |
if 0 == i: | |
z[i] = tf.nn.bias_add(tf.nn.relu(tf.nn.bias_add(tf.add(z3[i], z8[i]), bi[i], name='conv_'+str(i))), bo[i]) | |
else: | |
inlayer[i] = outlayer[i-1] | |
Wi[i] = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,1,FLAGS.filters], stddev=0.1), name='Wi_'+str(i)) | |
z[i] = tf.nn.bias_add(tf.nn.relu(tf.nn.bias_add( | |
tf.add(tf.add(z3[i],z8[i]),tf.nn.conv2d( inlayer[i], Wi[i], strides=[1,1,1,1], padding='SAME')), | |
bi[i], name='conv_'+str(i))), bo[i]) | |
Wii[i] = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,FLAGS.filters,FLAGS.filters], stddev=0.1), name='Wii_'+str(i)) | |
bii[i] = tf.Variable(tf.constant(0.0,shape=[FLAGS.filters]), name='bii_'+str(i)) | |
zz[i] = tf.nn.relu( tf.nn.bias_add( tf.nn.conv2d( z[i], Wii[i], strides=[1,1,1,1], padding='SAME'), bii[i])) | |
labelout[i] = tf.nn.conv2d_transpose( zz[i], Wo[i], [FLAGS.batch_size,FLAGS.ws,FLAGS.ws,1] ,strides=[1,1,1,1], padding='SAME') | |
if 0 == i: | |
outlayer[i] = labelout[i] | |
else : | |
outlayer[i] = tf.nn.relu( tf.add( tf.scalar_mul( beta[i] , labelout[i]), tf.scalar_mul(1.0-beta[i], inlayer[i]))) | |
label_cost[i] = tf.reduce_sum ( tf.pow( tf.sub(outlayer[i],label_distance),2)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment