Created
September 21, 2016 19:13
-
-
Save hagerty/724b84ad69897d1fe6d241bbca9e2781 to your computer and use it in GitHub Desktop.
Greedy clustering algorithm. No checks on simply connected are implemented. Probably could merge/eliminate really small clusters but I don't.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def GrowCluster ( intensity, cluster, mask, k ): | |
newcluster = cluster | |
#find boundary of current cluster | |
indexes = np.nonzero( np.logical_and(mask, (np.logical_not(newcluster)))) | |
while indexes : | |
growingboundary = 0 * cluster | |
for kk in range ( len (indexes[0] ) ): | |
i = indexes[0][kk] | |
j = indexes[1][kk] | |
isConnected = False | |
isDecreasing = False | |
if ( i > 0 ): | |
if (newcluster[i-1,j] == k): | |
isConnected = True | |
if intensity[i-1,j] >= intensity[i,j]: | |
isDecreasing = True | |
if ( i < newcluster.shape[0]-1 ): | |
if (newcluster[i+1,j] == k): | |
isConnected = True | |
if intensity[i+1,j] >= intensity[i,j]: | |
isDecreasing = True | |
if ( j > 0 ): | |
if (newcluster[i,j-1] == k): | |
isConnected = True | |
if intensity[i,j-1] >= intensity[i,j]: | |
isDecreasing = True | |
if ( j < newcluster.shape[1]-1 ): | |
if (newcluster[i,j+1] == k): | |
isConnected = True | |
if intensity[i,j+1] >= intensity[i,j]: | |
isDecreasing = True | |
if ( i > 0 ) and ( j > 0 ): | |
if (newcluster[i-1,j-1] == k): | |
isConnected = True | |
if intensity[i-1,j-1] >= intensity[i,j]: | |
isDecreasing = True | |
if ( i < newcluster.shape[0]-1 ) and (j > 0): | |
if (newcluster[i+1,j-1] == k): | |
isConnected = True | |
if intensity[i+1,j-1] >= intensity[i,j]: | |
isDecreasing = True | |
if ( j < newcluster.shape[1]-1 ) and ( i < newcluster.shape[0]-1 ): | |
if (newcluster[i+1,j+1] == k): | |
isConnected = True | |
if intensity[i+1,j+1] >= intensity[i,j]: | |
isDecreasing = True | |
if isDecreasing and isConnected: | |
growingboundary[i,j] = k | |
if ( np.count_nonzero( growingboundary ) ): | |
newcluster = newcluster + growingboundary | |
indexes = np.nonzero( np.logical_and(mask, (np.logical_not(newcluster)))) | |
else: | |
break | |
return newcluster | |
def FindLargestCluster( intensity, mask, k ): | |
peak = np.argmax(np.multiply( intensity, np.logical_and(intensity, mask))) | |
peaki = peak/intensity.shape[1] | |
peakj = peak - peaki * intensity.shape[1] | |
cluster = 0 * intensity | |
cluster[peaki,peakj] = k | |
return GrowCluster( intensity, cluster, mask, k ) | |
def FindAllClusters( intensity ): | |
mask = (intensity >= 0.5).astype(int) | |
print np.amax(intensity) | |
cluster = 0 * intensity | |
k = 1 | |
while (np.amax(mask) > 0 ): | |
k = k + 1 | |
cluster += FindLargestCluster ( intensity, mask, k ) | |
mask = np.logical_and(mask, np.logical_not(cluster)) | |
return cluster | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment