Last active
March 20, 2023 10:29
-
-
Save hagerty/90c40233ee2b6b58735dd7e817068bac to your computer and use it in GitHub Desktop.
Fully convolutional neural network for classifying building from 3-band and 8-band imagery
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Generator | |
with tf.device(gpu): | |
x8 = tf.placeholder(tf.float32, shape=[None, FLAGS.ws, FLAGS.ws, 8]) # 8-band input | |
x3 = tf.placeholder(tf.float32, shape=[None, scale * FLAGS.ws, scale * FLAGS.ws, 3]) # 3-band ipnput | |
label_distance = tf.placeholder(tf.float32, shape=[None, FLAGS.ws, FLAGS.ws, 1]) # distance transform as a label | |
for i in range(layers): | |
alpha[i] = tf.Variable(0.9, name='alpha_' + str(i)) | |
beta[i] = tf.maximum( 0.0 , tf.minimum ( 1.0 , alpha[i] ), name='beta_'+str(i)) | |
bi[i] = tf.Variable(tf.constant(0.0,shape=[FLAGS.filters]), name='bi_'+str(i)) | |
bo[i] = tf.Variable(tf.constant(0.0,shape=[FLAGS.filters]), name='bo_'+str(i)) | |
Wo[i] = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,1,FLAGS.filters], stddev=0.1), name='Wo_'+str(i)) # | |
if 0 == i: | |
# First layer project 11 bands onto one distance transform band | |
Wi3 = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,3,FLAGS.filters], stddev=0.1), name='Wi_'+str(i)+'l3') | |
Wi8 = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,8,FLAGS.filters], stddev=0.1), name='Wi_'+str(i)+'l8') | |
z3 = tf.nn.conv2d( x3, Wi3, strides=[1,scale,scale,1], padding='SAME') | |
z8 = tf.nn.conv2d( x8, Wi8, strides=[1,1,1,1], padding='SAME') | |
z[i] = tf.nn.bias_add(tf.nn.relu(tf.nn.bias_add(tf.add(z3, z8), bi[i], name='conv_'+str(i))), bo[i]) | |
vars_Wb = [Wi3,Wi8,Wo[i],bi[i],bo[i]] | |
else: | |
# non-initial bands are perturbations of previous bands output | |
inlayer[i] = outlayer[i-1] | |
Wi[i] = tf.Variable(tf.truncated_normal([FLAGS.filter_size,FLAGS.filter_size,1,FLAGS.filters], stddev=0.1), name='Wi_'+str(i)) | |
z[i] = tf.nn.bias_add(tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d( inlayer[i], Wi[i], strides=[1,1,1,1], padding='SAME'), bi[i], name='conv_'+str(i))), bo[i]) | |
vars_Wb = [Wi[i],Wo[i],bi[i],bo[i], alpha[i]] | |
labelout[i] = tf.nn.conv2d_transpose( z[i], Wo[i], [FLAGS.batch_size,FLAGS.ws,FLAGS.ws,1] ,strides=[1,1,1,1], padding='SAME') | |
if 0 == i: | |
outlayer[i] = labelout[i] | |
else : | |
# convex combination measures impact of layer | |
outlayer[i] = tf.nn.relu( tf.add( tf.scalar_mul( beta[i] , labelout[i]), tf.scalar_mul(1.0-beta[i], inlayer[i]))) | |
label_cost[i] = tf.reduce_sum ( tf.pow( tf.sub(outlayer[i],label_distance),2)) | |
label_optimizer[i] = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(label_cost[i], var_list=vars_Wb) | |
full_label_optimizer[i] = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(label_cost[i]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
please anyone have solution...