Last active
January 10, 2019 09:54
-
-
Save haitlahcen/04c7a17bae991c80d0c703040f79e499 to your computer and use it in GitHub Desktop.
rewrite proof
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| let | |
| Eq:Pi A:*. (A -> A -> *) = | |
| Lam A:*. | |
| Lam x:A. | |
| Lam y:A. | |
| Pi Prop:A -> *. | |
| (Prop x) -> (Prop y), | |
| Refl:Pi A:*. Pi x:A. (Eq A x x) = | |
| Lam A:*. | |
| Lam x:A. | |
| Lam Prop:A -> *. | |
| Lam propX:Prop x. | |
| propX, | |
| rewrite:Pi A:*. | |
| Pi x:A. | |
| Pi y:A. | |
| Pi eqXY:Eq A x y. | |
| Pi Prop:A -> *. | |
| Pi propX:Prop x. | |
| (Prop y) = | |
| Lam A:*. | |
| Lam x:A. | |
| Lam y:A. | |
| Lam eqXY:Pi Prop:A -> *. (Prop x) -> (Prop y). | |
| Lam Prop:A -> *. | |
| Lam propX:Prop x. | |
| (eqXY Prop propX) | |
| in | |
| let | |
| sym:Pi A:*. Pi x:A. Pi y:A. Pi eqXY:Eq A x y. (Eq A y x) = | |
| Lam A:*. | |
| Lam x:A. | |
| Lam y:A. | |
| Lam eqXY:Eq A x y. | |
| (rewrite A x y eqXY (Lam z:A. Eq A z x) (Refl A x)) | |
| in | |
| let | |
| Number:* = Pi N:*. ((N -> N) -> N -> N), | |
| Succ:(Number -> Number) = | |
| Lam x:Pi N:*. (N -> N) -> N -> N. | |
| Lam N:*. | |
| Lam Succ:N -> N. | |
| Lam Zero:N. | |
| (Succ (x N Succ Zero)), | |
| Zero:Number = | |
| Lam N:*. | |
| Lam Succ:N -> N. | |
| Lam Zero:N. | |
| Zero, | |
| Plus:(Number -> Number -> Number) = | |
| Lam y:Pi N:*. (N -> N) -> N -> N. | |
| y (Pi N:*. (N -> N) -> N -> N) | |
| (Lam x:Pi N:*. (N -> N) -> N -> N. | |
| Lam N:*. | |
| Lam Succ:N -> N. | |
| Lam Zero:N. | |
| Succ (x N Succ Zero)), | |
| foldNum:(Number -> Pi R:*. (R -> R) -> R -> R) = | |
| Lam n:Pi N:*. (N -> N) -> N -> N. | |
| Lam R:*. | |
| Lam Succ:R -> R. | |
| Lam Zero:R. | |
| (n R Succ Zero), | |
| plusZeroLeftNeutral:Pi n:Number. (Eq Number (Plus Zero n) n) = | |
| let N:* = (Pi N:*. (N -> N) -> N -> N) | |
| in | |
| Lam n:N. | |
| Refl N n, | |
| Vect:(Number -> * -> *) = | |
| Lam k:Pi N:*. (N -> N) -> N -> N. | |
| Lam A:*. | |
| Pi R:*. (A -> R -> R) -> R -> R, | |
| Cons:Pi k:Number. Pi A:*. (A -> (Vect k A) -> (Vect (Succ k) A)) = | |
| Lam k:Pi N:*. (N -> N) -> N -> N. | |
| Lam A:*. | |
| Lam x:A. | |
| Lam xs:Pi R:*. (A -> R -> R) -> R -> R. | |
| Lam R:*. | |
| Lam Cons:A -> R -> R. | |
| Lam Nil:R. | |
| Cons x (xs R Cons Nil), | |
| Nil:Pi A:*. (Vect Zero A) = | |
| Lam A:*. | |
| Lam R:*. | |
| Lam Cons:A -> R -> R. | |
| Lam Nil:R. | |
| Nil, | |
| Append:Pi m:Number. Pi n:Number. Pi A:*. ((Vect m A) -> (Vect n A) -> (Vect (Plus m n) A)) = | |
| let N:* = Pi N:*. ((N -> N) -> N -> N) | |
| in | |
| (Lam m:N. | |
| Lam n:N. | |
| Lam A:*. | |
| Lam u:Pi R:*. (A -> R -> R) -> R -> R. | |
| u (Pi R:*. (A -> R -> R) -> R -> R) | |
| (Lam x:A. | |
| Lam v:Pi R:*. (A -> R -> R) -> R -> R. | |
| Lam R:*. | |
| Lam Cons:A -> R -> R. | |
| Lam Nil:R. | |
| Cons x (v R Cons Nil))) | |
| in Cons Zero | |
| Nat | |
| 33 | |
| (rewrite Number | |
| (Plus Zero Zero) | |
| Zero | |
| (plusZeroLeftNeutral Zero) | |
| (Lam x:Number. Vect x Nat) | |
| (Append Zero | |
| Zero | |
| Nat | |
| (Nil Nat) | |
| (Nil Nat))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment