Created
September 22, 2020 14:33
-
-
Save hakatashi/6a7d9d03f013116f110c46527e5fac5c to your computer and use it in GitHub Desktop.
TokyoWesterns CTF 2020 sqrt solver script
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require "big" | |
record Mint, value : BigInt do | |
MOD = BigInt.new("6722156186149423473586056936189163112345526308304739592548269432948561498704906497631759731744824085311511299618196491816929603296108414569727189748975204102209646335725406551943711581704258725226874414399572244863268492324353927787818836752142254189928999592648333789131233670456465647924867060170327150559233") | |
ZERO = BigInt.new("0") | |
ONE = BigInt.new("1") | |
TWO = BigInt.new("2") | |
def self.factorial(n) | |
if @@factorials.empty? | |
@@factorials << self.new(1_i64) | |
end | |
@@factorials.size.upto(n) do |i| | |
@@factorials << @@factorials.last * i | |
end | |
@@factorials[n] | |
end | |
def self.permutation(n, k) | |
raise ArgumentError.new("k cannot be greater than n") unless n >= k | |
factorial(n) // factorial(n - k) | |
end | |
def self.combination(n, k) | |
raise ArgumentError.new("k cannot be greater than n") unless n >= k | |
permutation(n, k) // @@factorials[k] | |
end | |
def self.repeated_combination(n, k) | |
combination(n + k - 1, k) | |
end | |
def self.extended_gcd(a, b) | |
last_remainder, remainder = a.abs, b.abs | |
x, last_x, y, last_y = ZERO, ONE, ONE, ZERO | |
while remainder != 0 | |
new_last_remainder = remainder | |
quotient, remainder = last_remainder.divmod(remainder) | |
last_remainder = new_last_remainder | |
x, last_x = last_x - quotient * x, x | |
y, last_y = last_y - quotient * y, y | |
end | |
return last_remainder, last_x * (a < 0 ? -1 : 1), last_y * (b < 0 ? -1 : 1) | |
end | |
def self.zero | |
self.new(0_i64) | |
end | |
def inv | |
g, x, _ = self.class.extended_gcd(@value, MOD) | |
self.class.new(x % MOD) | |
end | |
def +(value) | |
self.class.new((@value + value.to_i64 % MOD) % MOD) | |
end | |
def -(value) | |
self.class.new((@value + MOD - value.to_i64 % MOD) % MOD) | |
end | |
def *(value) | |
self.class.new((@value * value.to_i64 % MOD) % MOD) | |
end | |
def /(value : self) | |
raise DivisionByZeroError.new if value == 0 | |
self * value.inv | |
end | |
def /(value) | |
raise DivisionByZeroError.new if value == 0 | |
self * self.class.new(value.to_i64 % MOD).inv | |
end | |
def //(value) | |
self./(value) | |
end | |
def **(value) | |
b = value > 0 ? self : self.inv | |
e = value.abs | |
ret = self.class.new(ONE) | |
while e > 0 | |
if e % 2 == 1 | |
ret *= b | |
end | |
b *= b | |
e //= 2 | |
end | |
ret | |
end | |
def <<(value) | |
self * self.class.new(TWO) ** value | |
end | |
def sqrt | |
z = self.class.new(ONE) | |
until z ** ((MOD - 1) // 2) == MOD - 1 | |
z += 1 | |
end | |
q = MOD - 1 | |
m = 0 | |
while q % 2 == 0 | |
q //= 2 | |
m += 1 | |
end | |
c = z ** q | |
t = self ** q | |
r = self ** ((q + 1) // 2) | |
m.downto(2) do |i| | |
tmp = t ** (2 ** (i - 2)) | |
if tmp != 1 | |
r *= c | |
t *= c ** 2 | |
end | |
c *= c | |
end | |
if r * r == self | |
{r, -r} | |
else | |
nil | |
end | |
end | |
def to_i64 | |
@value | |
end | |
def ==(value : self) | |
@value == value.to_i64 | |
end | |
def ==(value) | |
@value == value | |
end | |
def - | |
self.class.new(BigInt.zero) - self | |
end | |
def + | |
self | |
end | |
def abs | |
self | |
end | |
# ac-library compatibility | |
def pow(value) | |
self.**(value) | |
end | |
def val | |
self.to_i64 | |
end | |
# ModInt shouldn't be compared | |
def <(value) | |
raise NotImplementedError.new("<") | |
end | |
def <=(value) | |
raise NotImplementedError.new("<=") | |
end | |
def <(value) | |
raise NotImplementedError.new("<") | |
end | |
def >=(value) | |
raise NotImplementedError.new(">=") | |
end | |
delegate to_s, to: @value | |
delegate inspect, to: @value | |
end | |
c = BigInt.new("5602276430032875007249509644314357293319755912603737631044802989314683039473469151600643674831915676677562504743413434940280819915470852112137937963496770923674944514657123370759858913638782767380945111493317828235741160391407042689991007589804877919105123960837253705596164618906554015382923343311865102111160") | |
mod = BigInt.new("6722156186149423473586056936189163112345526308304739592548269432948561498704906497631759731744824085311511299618196491816929603296108414569727189748975204102209646335725406551943711581704258725226874414399572244863268492324353927787818836752142254189928999592648333789131233670456465647924867060170327150559233") | |
a, n, m = Mint.extended_gcd(mod - 1, 1.to_big_i << 64) | |
def multi_sqrt(n, t) | |
if t == 0 | |
return n | |
end | |
result = n.sqrt | |
unless result.nil? | |
a, b = result | |
return multi_sqrt(a, t - 1) | |
end | |
end | |
m30 = Mint.new(c) ** m | |
x = multi_sqrt(m30, 30).not_nil! | |
z = multi_sqrt(Mint.new(mod - 1), 29).not_nil! | |
p x ** (2.to_big_i ** 30) == m30 | |
p x ** (2.to_big_i ** 64) == c | |
p z ** (2.to_big_i ** 29) == mod - 1 | |
p z ** (2.to_big_i ** 30) == 1 | |
instance = ARGV.size > 0 ? ARGV[0].to_i : 0 | |
x *= z ** ((1_i64 << 28) * instance) | |
(1_i64 << 28).times do |i| | |
if i % 10000000 == 0 | |
puts "#{instance} #{i}" | |
end | |
x *= z | |
if x.to_i64 >> 288 == 92733768484475_i64 | |
puts "#{instance} #{x}" | |
exit | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment