Last active
November 22, 2017 08:29
-
-
Save halegreen/1c6f400a505996385ce69b18a69d8348 to your computer and use it in GitHub Desktop.
Transform dataframe data to the ffmlib datatype
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## for category columns | |
def category_feature2FFM(data, category_list): | |
previous_len = 0 | |
for i in range(len(category_list)): | |
category_name = category_list[i] | |
dic = data[category_name].unique() | |
dic = dict(zip(dic, range(len(dic)))) | |
def data2ffm(x): | |
return (i, dic.get(x)+previous_len, 1) | |
data[category_name] = data[category_name].map(data2ffm) | |
previous_len += len(dic) | |
print('%s转换完成'%category_name) | |
return data | |
## for numerical columns | |
def numeric_feature2FFM(data, numeric_list, start_num): | |
for i in range(len(numeric_list)): | |
numeric_name = numeric_list[i] | |
field_id = start_num + i | |
def numeric2ffm(x): | |
return (field_id, int(1), x) | |
scaler = MinMaxScaler() | |
scaler.fit(data[numeric_name]) | |
data[numeric_name] = scaler.transform(data[numeric_name]) | |
data[numeric_name] = data[numeric_name].map(numeric2ffm) | |
print('%s转换完成'%numeric_name) | |
return data |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment