Skip to content

Instantly share code, notes, and snippets.

@hamelsmu
Created September 11, 2024 20:25
Show Gist options
  • Save hamelsmu/75ea6e0364f899271a0f83ea1c243c54 to your computer and use it in GitHub Desktop.
Save hamelsmu/75ea6e0364f899271a0f83ea1c243c54 to your computer and use it in GitHub Desktop.
Basic functionality

Basic functionality

Basic functionality used in the fastai library

Basics


source

ifnone

>      ifnone (a, b)

b if a is None else a

Since b if a is None else a is such a common pattern, we wrap it in a function. However, be careful, because python will evaluate both a and b when calling ifnone (which it doesn’t do if using the if version directly).

test_eq(ifnone(None,1), 1)
test_eq(ifnone(2   ,1), 2)__

source

maybe_attr

>      maybe_attr (o, attr)

getattr(o,attr,o)

Return the attribute attr for object o. If the attribute doesn’t exist, then return the object o instead.

class myobj: myattr='foo'

test_eq(maybe_attr(myobj, 'myattr'), 'foo')
test_eq(maybe_attr(myobj, 'another_attr'), myobj)__

source

basic_repr

>      basic_repr (flds=None)

Minimal__repr__

In types which provide rich display functionality in Jupyter, their __repr__ is also called in order to provide a fallback text representation. Unfortunately, this includes a memory address which changes on every invocation, making it non-deterministic. This causes diffs to get messy and creates conflicts in git. To fix this, put __repr__=basic_repr() inside your class.

class SomeClass: __repr__=basic_repr()
repr(SomeClass())__
'<__main__.SomeClass>'

If you pass a list of attributes (flds) of an object, then this will generate a string with the name of each attribute and its corresponding value. The format of this string is key=value, where key is the name of the attribute, and value is the value of the attribute. For each value, attempt to use the __name__ attribute, otherwise fall back to using the value’s __repr__ when constructing the string.

class SomeClass:
    a=1
    b='foo'
    __repr__=basic_repr('a,b')
    __name__='some-class'

repr(SomeClass())__
"__main__.SomeClass(a=1, b='foo')"
class AnotherClass:
    c=SomeClass()
    d='bar'
    __repr__=basic_repr(['c', 'd'])

repr(AnotherClass())__
"__main__.AnotherClass(c=__main__.SomeClass(a=1, b='foo'), d='bar')"

source

is_array

>      is_array (x)

True if x supports __array__ or iloc

is_array(np.array(1)),is_array([1])__
(True, False)

source

listify

>      listify (o=None, *rest, use_list=False, match=None)

Converto to a list

Conversion is designed to “do what you mean”, e.g:

test_eq(listify('hi'), ['hi'])
test_eq(listify(b'hi'), [b'hi'])
test_eq(listify(array(1)), [array(1)])
test_eq(listify(1), [1])
test_eq(listify([1,2]), [1,2])
test_eq(listify(range(3)), [0,1,2])
test_eq(listify(None), [])
test_eq(listify(1,2), [1,2])__
arr = np.arange(9).reshape(3,3)
listify(arr)__
[array([[0, 1, 2],
        [3, 4, 5],
        [6, 7, 8]])]
listify(array([1,2]))__
[array([1, 2])]

Generators are turned into lists too:

gen = (o for o in range(3))
test_eq(listify(gen), [0,1,2])__

Use match to provide a length to match:

test_eq(listify(1,match=3), [1,1,1])__

If match is a sequence, it’s length is used:

test_eq(listify(1,match=range(3)), [1,1,1])__

If the listified item is not of length 1, it must be the same length as match:

test_eq(listify([1,1,1],match=3), [1,1,1])
test_fail(lambda: listify([1,1],match=3))__

source

tuplify

>      tuplify (o, use_list=False, match=None)

Makeo a tuple

test_eq(tuplify(None),())
test_eq(tuplify([1,2,3]),(1,2,3))
test_eq(tuplify(1,match=[1,2,3]),(1,1,1))__

source

true

>      true (x)

Test whetherx is truthy; collections with >0 elements are considered True

[(o,true(o)) for o in
 (array(0),array(1),array([0]),array([0,1]),1,0,'',None)]__
[(array(0), False),
 (array(1), True),
 (array([0]), True),
 (array([0, 1]), True),
 (1, True),
 (0, False),
 ('', False),
 (None, False)]

source

NullType

>      NullType ()

An object that isFalse and can be called, chained, and indexed

bool(null.hi().there[3])__
False

source

tonull

>      tonull (x)

ConvertNone to null

bool(tonull(None).hi().there[3])__
False

source

get_class

>      get_class (nm, *fld_names, sup=None, doc=None, funcs=None, anno=None,
>                 **flds)

Dynamically create a class, optionally inheriting fromsup, containing fld_names

_t = get_class('_t', 'a', b=2, anno={'b':int})
t = _t()
test_eq(t.a, None)
test_eq(t.b, 2)
t = _t(1, b=3)
test_eq(t.a, 1)
test_eq(t.b, 3)
t = _t(1, 3)
test_eq(t.a, 1)
test_eq(t.b, 3)
test_eq(t, pickle.loads(pickle.dumps(t)))
test_eq(_t.__annotations__, {'b':int, 'a':typing.Any})
repr(t)__
'__main__._t(a=1, b=3)'

Most often you’ll want to call mk_class, since it adds the class to your module. See mk_class for more details and examples of use (which also apply to get_class).


source

mk_class

>      mk_class (nm, *fld_names, sup=None, doc=None, funcs=None, mod=None,
>                anno=None, **flds)

Create a class usingget_class and add to the caller’s module

Any kwargs will be added as class attributes, and sup is an optional (tuple of) base classes.

mk_class('_t', a=1, sup=dict)
t = _t()
test_eq(t.a, 1)
assert(isinstance(t,dict))__

A __init__ is provided that sets attrs for any kwargs, and for any args (matching by position to fields), along with a __repr__ which prints all attrs. The docstring is set to doc. You can pass funcs which will be added as attrs with the function names.

def foo(self): return 1
mk_class('_t', 'a', sup=dict, doc='test doc', funcs=foo)

t = _t(3, b=2)
test_eq(t.a, 3)
test_eq(t.b, 2)
test_eq(t.foo(), 1)
test_eq(t.__doc__, 'test doc')
t __
{}

source

wrap_class

>      wrap_class (nm, *fld_names, sup=None, doc=None, funcs=None, **flds)

Decorator: makes function a method of a new classnm passing parameters to mk_class

@wrap_class('_t', a=2)
def bar(self,x): return x+1

t = _t()
test_eq(t.a, 2)
test_eq(t.bar(3), 4)__

source

ignore_exceptions

>      ignore_exceptions ()

Context manager to ignore exceptions

with ignore_exceptions(): 
    # Exception will be ignored
    raise Exception __

source

exec_local

>      exec_local (code, var_name)

Callexec on code and return the var var_name

test_eq(exec_local("a=1", "a"), 1)__

source

risinstance

>      risinstance (types, obj=None)

Curriedisinstance but with args reversed

assert risinstance(int, 1)
assert not risinstance(str, 0)
assert risinstance(int)(1)
assert not risinstance(int)(None)__

types can also be strings:

assert risinstance(('str','int'), 'a')
assert risinstance('str', 'a')
assert not risinstance('int', 'a')__

source

ver2tuple

>      ver2tuple (v:str)
test_eq(ver2tuple('3.8.1'), (3,8,1))
test_eq(ver2tuple('3.1'), (3,1,0))
test_eq(ver2tuple('3.'), (3,0,0))
test_eq(ver2tuple('3'), (3,0,0))__

NoOp

These are used when you need a pass-through function.


noop

>      noop (x=None, *args, **kwargs)

Do nothing

noop()
test_eq(noop(1),1)__

noops

>      noops (x=None, *args, **kwargs)

Do nothing (method)

class _t: foo=noops
test_eq(_t().foo(1),1)__

Infinite Lists

These lists are useful for things like padding an array or adding index column(s) to arrays.

Inf defines the following properties:

  • count: itertools.count()
  • zeros: itertools.cycle([0])
  • ones : itertools.cycle([1])
  • nones: itertools.cycle([None])
test_eq([o for i,o in zip(range(5), Inf.count)],
        [0, 1, 2, 3, 4])

test_eq([o for i,o in zip(range(5), Inf.zeros)],
        [0]*5)

test_eq([o for i,o in zip(range(5), Inf.ones)],
        [1]*5)

test_eq([o for i,o in zip(range(5), Inf.nones)],
        [None]*5)__

Operator Functions


source

in_

>      in_ (x, a)

True if x in a

# test if element is in another
assert in_('c', ('b', 'c', 'a'))
assert in_(4, [2,3,4,5])
assert in_('t', 'fastai')
test_fail(in_('h', 'fastai'))

# use in_ as a partial
assert in_('fastai')('t')
assert in_([2,3,4,5])(4)
test_fail(in_('fastai')('h'))__

In addition to in_, the following functions are provided matching the behavior of the equivalent versions in operator: lt gt le ge eq ne add sub mul truediv is is_not mod_.

lt(3,5),gt(3,5),is_(None,None),in_(0,[1,2]),mod(3,2)__
(True, False, True, False, 1)

Similarly to _in, they also have additional functionality: if you only pass one param, they return a partial function that passes that param as the second positional parameter.

lt(5)(3),gt(5)(3),is_(None)(None),in_([1,2])(0),mod(2)(3)__
(True, False, True, False, 1)

source

ret_true

>      ret_true (*args, **kwargs)

Predicate: alwaysTrue

assert ret_true(1,2,3)
assert ret_true(False)__

source

ret_false

>      ret_false (*args, **kwargs)

Predicate: alwaysFalse


source

stop

>      stop (e=<class 'StopIteration'>)

Raises exceptione (by default StopIteration)


source

gen

>      gen (func, seq, cond=<function ret_true>)

Like(func(o) for o in seq if cond(func(o))) but handles StopIteration

test_eq(gen(noop, Inf.count, lt(5)),
        range(5))
test_eq(gen(operator.neg, Inf.count, gt(-5)),
        [0,-1,-2,-3,-4])
test_eq(gen(lambda o:o if o<5 else stop(), Inf.count),
        range(5))__

source

chunked

>      chunked (it, chunk_sz=None, drop_last=False, n_chunks=None)

Return batches from iteratorit of size chunk_sz (or return n_chunks total)

Note that you must pass either chunk_sz, or n_chunks, but not both.

t = list(range(10))
test_eq(chunked(t,3),      [[0,1,2], [3,4,5], [6,7,8], [9]])
test_eq(chunked(t,3,True), [[0,1,2], [3,4,5], [6,7,8],    ])

t = map(lambda o:stop() if o==6 else o, Inf.count)
test_eq(chunked(t,3), [[0, 1, 2], [3, 4, 5]])
t = map(lambda o:stop() if o==7 else o, Inf.count)
test_eq(chunked(t,3), [[0, 1, 2], [3, 4, 5], [6]])

t = np.arange(10)
test_eq(chunked(t,3),      [[0,1,2], [3,4,5], [6,7,8], [9]])
test_eq(chunked(t,3,True), [[0,1,2], [3,4,5], [6,7,8],    ])

test_eq(chunked([], 3),          [])
test_eq(chunked([], n_chunks=3), [])__

source

otherwise

>      otherwise (x, tst, y)

y if tst(x) else x

test_eq(otherwise(2+1, gt(3), 4), 3)
test_eq(otherwise(2+1, gt(2), 4), 4)__

Attribute Helpers

These functions reduce boilerplate when setting or manipulating attributes or properties of objects.


source

custom_dir

>      custom_dir (c, add)

Implement custom__dir__, adding add to cls

custom_dir allows you extract the __dict__ property of a class and appends the list add to it.

class _T: 
    def f(): pass

s = custom_dir(_T(), add=['foo', 'bar'])
assert {'foo', 'bar', 'f'}.issubset(s)__

source

AttrDict

dict subclass that also provides access to keys as attrs

d = AttrDict(a=1,b="two")
test_eq(d.a, 1)
test_eq(d['b'], 'two')
test_eq(d.get('c','nope'), 'nope')
d.b = 2
test_eq(d.b, 2)
test_eq(d['b'], 2)
d['b'] = 3
test_eq(d['b'], 3)
test_eq(d.b, 3)
assert 'a' in dir(d)__

AttrDict will pretty print in Jupyter Notebooks:

_test_dict = {'a':1, 'b': {'c':1, 'd':2}, 'c': {'c':1, 'd':2}, 'd': {'c':1, 'd':2},
              'e': {'c':1, 'd':2}, 'f': {'c':1, 'd':2, 'e': 4, 'f':[1,2,3,4,5]}}
AttrDict(_test_dict)__
{ 'a': 1,
  'b': {'c': 1, 'd': 2},
  'c': {'c': 1, 'd': 2},
  'd': {'c': 1, 'd': 2},
  'e': {'c': 1, 'd': 2},
  'f': {'c': 1, 'd': 2, 'e': 4, 'f': [1, 2, 3, 4, 5]}}__

source

AttrDictDefault

>      AttrDictDefault (*args, default_=None, **kwargs)

AttrDict subclass that returns None for missing attrs

d = AttrDictDefault(a=1,b="two", default_='nope')
test_eq(d.a, 1)
test_eq(d['b'], 'two')
test_eq(d.c, 'nope')__

source

NS

SimpleNamespace subclass that also adds iter and dict support

This is very similar to AttrDict, but since it starts with SimpleNamespace, it has some differences in behavior. You can use it just like SimpleNamespace:

d = NS(**_test_dict)
d __
namespace(a=1,
          b={'c': 1, 'd': 2},
          c={'c': 1, 'd': 2},
          d={'c': 1, 'd': 2},
          e={'c': 1, 'd': 2},
          f={'c': 1, 'd': 2, 'e': 4, 'f': [1, 2, 3, 4, 5]})

…but you can also index it to get/set:

d['a']__
1

…and iterate t:

list(d)__
['a', 'b', 'c', 'd', 'e', 'f']

source

get_annotations_ex

>      get_annotations_ex (obj, globals=None, locals=None)

Backport of py3.10get_annotations that returns globals/locals

In Python 3.10 inspect.get_annotations was added. However previous versions of Python are unable to evaluate type annotations correctly if from future import __annotations__ is used. Furthermore, all annotations are evaluated, even if only some subset are needed. get_annotations_ex provides the same functionality as inspect.get_annotations, but works on earlier versions of Python, and returns the globals and locals needed to evaluate types.


source

eval_type

>      eval_type (t, glb, loc)

eval a type or collection of types, if needed, for annotations in py3.10+

In py3.10, or if from future import __annotations__ is used, a is a str:

class _T2a: pass
def func(a: _T2a): pass
ann,glb,loc = get_annotations_ex(func)

eval_type(ann['a'], glb, loc)__
__main__._T2a

| is supported for defining Union types when using eval_type even for python versions prior to 3.9:

class _T2b: pass
def func(a: _T2a|_T2b): pass
ann,glb,loc = get_annotations_ex(func)

eval_type(ann['a'], glb, loc)__
typing.Union[__main__._T2a, __main__._T2b]

source

type_hints

>      type_hints (f)

Liketyping.get_type_hints but returns {} if not allowed type

Below is a list of allowed types for type hints in python:

list(typing._allowed_types)__
[function,
 builtin_function_or_method,
 method,
 module,
 wrapper_descriptor,
 method-wrapper,
 method_descriptor]

For example, type func is allowed so type_hints returns the same value as typing.get_hints:

def f(a:int)->bool: ... # a function with type hints (allowed)
exp = {'a':int,'return':bool}
test_eq(type_hints(f), typing.get_type_hints(f))
test_eq(type_hints(f), exp)__

However, class is not an allowed type, so type_hints returns {}:

class _T:
    def __init__(self, a:int=0)->bool: ...
assert not type_hints(_T)__

source

annotations

>      annotations (o)

Annotations foro, or type(o)

This supports a wider range of situations than type_hints, by checking type() and __init__ for annotations too:

for o in _T,_T(),_T.__init__,f: test_eq(annotations(o), exp)
assert not annotations(int)
assert not annotations(print)__

source

anno_ret

>      anno_ret (func)

Get the return annotation offunc

def f(x) -> float: return x
test_eq(anno_ret(f), float)

def f(x) -> typing.Tuple[float,float]: return x
assert anno_ret(f)==typing.Tuple[float,float]__

If your return annotation is None, anno_ret will return NoneType (and not None):

def f(x) -> None: return x

test_eq(anno_ret(f), NoneType)
assert anno_ret(f) is not None # returns NoneType instead of None __

If your function does not have a return type, or if you pass in None instead of a function, then anno_ret returns None:

def f(x): return x

test_eq(anno_ret(f), None)
test_eq(anno_ret(None), None) # instead of passing in a func, pass in None __

source

signature_ex

>      signature_ex (obj, eval_str:bool=False)

Backport ofinspect.signature(..., eval_str=True to <py310


source

union2tuple

>      union2tuple (t)
test_eq(union2tuple(Union[int,str]), (int,str))
test_eq(union2tuple(int), int)
assert union2tuple(Tuple[int,str])==Tuple[int,str]
test_eq(union2tuple((int,str)), (int,str))
if UnionType: test_eq(union2tuple(int|str), (int,str))__

source

argnames

>      argnames (f, frame=False)

Names of arguments to function or framef

test_eq(argnames(f), ['x'])__

source

with_cast

>      with_cast (f)

Decorator which uses any parameter annotations as preprocessing functions

@with_cast
def _f(a, b:Path, c:str='', d=0): return (a,b,c,d)

test_eq(_f(1, '.', 3), (1,Path('.'),'3',0))
test_eq(_f(1, '.'), (1,Path('.'),'',0))

@with_cast
def _g(a:int=0)->str: return a

test_eq(_g(4.0), '4')
test_eq(_g(4.4), '4')
test_eq(_g(2), '2')__

source

store_attr

>      store_attr (names=None, but='', cast=False, store_args=None, **attrs)

Store params named in comma-separatednames from calling context into attrs in self

In it’s most basic form, you can use store_attr to shorten code like this:

class T:
    def __init__(self, a,b,c): self.a,self.b,self.c = a,b,c __

…to this:

class T:
    def __init__(self, a,b,c): store_attr('a,b,c', self)__

This class behaves as if we’d used the first form:

t = T(1,c=2,b=3)
assert t.a==1 and t.b==3 and t.c==2 __

In addition, it stores the attrs as a dict in __stored_args__, which you can use for display, logging, and so forth.

test_eq(t.__stored_args__, {'a':1, 'b':3, 'c':2})__

Since you normally want to use the first argument (often called self) for storing attributes, it’s optional:

class T:
    def __init__(self, a,b,c:str): store_attr('a,b,c')

t = T(1,c=2,b=3)
assert t.a==1 and t.b==3 and t.c==2 __

With cast=True any parameter annotations will be used as preprocessing functions for the corresponding arguments:

class T:
    def __init__(self, a:listify, b, c:str): store_attr('a,b,c', cast=True)

t = T(1,c=2,b=3)
assert t.a==[1] and t.b==3 and t.c=='2'__

You can inherit from a class using store_attr, and just call it again to add in any new attributes added in the derived class:

class T2(T):
    def __init__(self, d, **kwargs):
        super().__init__(**kwargs)
        store_attr('d')

t = T2(d=1,a=2,b=3,c=4)
assert t.a==2 and t.b==3 and t.c==4 and t.d==1 __

You can skip passing a list of attrs to store. In this case, all arguments passed to the method are stored:

class T:
    def __init__(self, a,b,c): store_attr()

t = T(1,c=2,b=3)
assert t.a==1 and t.b==3 and t.c==2 __
class T4(T):
    def __init__(self, d, **kwargs):
        super().__init__(**kwargs)
        store_attr()

t = T4(4, a=1,c=2,b=3)
assert t.a==1 and t.b==3 and t.c==2 and t.d==4 __
class T4:
    def __init__(self, *, a: int, b: float = 1):
        store_attr()

t = T4(a=3)
assert t.a==3 and t.b==1
t = T4(a=3, b=2)
assert t.a==3 and t.b==2 __

You can skip some attrs by passing but:

class T:
    def __init__(self, a,b,c): store_attr(but='a')

t = T(1,c=2,b=3)
assert t.b==3 and t.c==2
assert not hasattr(t,'a')__

You can also pass keywords to store_attr, which is identical to setting the attrs directly, but also stores them in __stored_args__.

class T:
    def __init__(self): store_attr(a=1)

t = T()
assert t.a==1 __

You can also use store_attr inside functions.

def create_T(a, b):
    t = SimpleNamespace()
    store_attr(self=t)
    return t

t = create_T(a=1, b=2)
assert t.a==1 and t.b==2 __

source

attrdict

>      attrdict (o, *ks, default=None)

Dict from eachk in ks to getattr(o,k)

class T:
    def __init__(self, a,b,c): store_attr()

t = T(1,c=2,b=3)
test_eq(attrdict(t,'b','c'), {'b':3, 'c':2})__

source

properties

>      properties (cls, *ps)

Change attrs incls with names in ps to properties

class T:
    def a(self): return 1
    def b(self): return 2
properties(T,'a')

test_eq(T().a,1)
test_eq(T().b(),2)__

source

camel2words

>      camel2words (s, space=' ')

Convert CamelCase to ‘spaced words’

test_eq(camel2words('ClassAreCamel'), 'Class Are Camel')__

source

camel2snake

>      camel2snake (name)

Convert CamelCase to snake_case

test_eq(camel2snake('ClassAreCamel'), 'class_are_camel')
test_eq(camel2snake('Already_Snake'), 'already__snake')__

source

snake2camel

>      snake2camel (s)

Convert snake_case to CamelCase

test_eq(snake2camel('a_b_cc'), 'ABCc')__

source

class2attr

>      class2attr (cls_name)

Return the snake-cased name of the class; strip endingcls_name if it exists.

class Parent:
    @property
    def name(self): return class2attr(self, 'Parent')

class ChildOfParent(Parent): pass
class ParentChildOf(Parent): pass

p = Parent()
cp = ChildOfParent()
cp2 = ParentChildOf()

test_eq(p.name, 'parent')
test_eq(cp.name, 'child_of')
test_eq(cp2.name, 'parent_child_of')__

source

getcallable

>      getcallable (o, attr)

Callsgetattr with a default of noop

class Math:
    def addition(self,a,b): return a+b

m = Math()

test_eq(getcallable(m, "addition")(a=1,b=2), 3)
test_eq(getcallable(m, "subtraction")(a=1,b=2), None)__

source

getattrs

>      getattrs (o, *attrs, default=None)

List of allattrs in o

from fractions import Fraction __
getattrs(Fraction(1,2), 'numerator', 'denominator')__
[1, 2]

source

hasattrs

>      hasattrs (o, attrs)

Test whethero contains all attrs

assert hasattrs(1,('imag','real'))
assert not hasattrs(1,('imag','foo'))__

source

setattrs

>      setattrs (dest, flds, src)
d = dict(a=1,bb="2",ignore=3)
o = SimpleNamespace()
setattrs(o, "a,bb", d)
test_eq(o.a, 1)
test_eq(o.bb, "2")__
d = SimpleNamespace(a=1,bb="2",ignore=3)
o = SimpleNamespace()
setattrs(o, "a,bb", d)
test_eq(o.a, 1)
test_eq(o.bb, "2")__

source

try_attrs

>      try_attrs (obj, *attrs)

Return first attr that exists inobj

test_eq(try_attrs(1, 'real'), 1)
test_eq(try_attrs(1, 'foobar', 'real'), 1)__

Attribute Delegation


source

GetAttrBase

>      GetAttrBase ()

Basic delegation of__getattr__ and __dir__


source

GetAttr

>      GetAttr ()

Inherit from this to have all attr accesses inself._xtra passed down to self.default

Inherit from GetAttr to have attr access passed down to an instance attribute. This makes it easy to create composites that don’t require callers to know about their components. For a more detailed discussion of how this works as well as relevant context, we suggest reading the delegated composition section of this blog article.

You can customise the behaviour of GetAttr in subclasses via; - _default - By default, this is set to 'default', so attr access is passed down to self.default - _default can be set to the name of any instance attribute that does not start with dunder __ - _xtra - By default, this is None, so all attr access is passed down - You can limit which attrs get passed down by setting _xtra to a list of attribute names

To illuminate the utility of GetAttr, suppose we have the following two classes, _WebPage which is a superclass of _ProductPage, which we wish to compose like so:

class _WebPage:
    def __init__(self, title, author="Jeremy"):
        self.title,self.author = title,author

class _ProductPage:
    def __init__(self, page, price): self.page,self.price = page,price

page = _WebPage('Soap', author="Sylvain")
p = _ProductPage(page, 15.0)__

How do we make it so we can just write p.author, instead of p.page.author to access the author attribute? We can use GetAttr, of course! First, we subclass GetAttr when defining _ProductPage. Next, we set self.default to the object whose attributes we want to be able to access directly, which in this case is the page argument passed on initialization:

class _ProductPage(GetAttr):
    def __init__(self, page, price): self.default,self.price = page,price #self.default allows you to access page directly.

p = _ProductPage(page, 15.0)__

Now, we can access the author attribute directly from the instance:

test_eq(p.author, 'Sylvain')__

If you wish to store the object you are composing in an attribute other than self.default, you can set the class attribute _data as shown below. This is useful in the case where you might have a name collision with self.default:

class _C(GetAttr):
    _default = '_data' # use different component name; `self._data` rather than `self.default`
    def __init__(self,a): self._data = a
    def foo(self): noop

t = _C('Hi')
test_eq(t._data, 'Hi') 
test_fail(lambda: t.default) # we no longer have self.default
test_eq(t.lower(), 'hi')
test_eq(t.upper(), 'HI')
assert 'lower' in dir(t)
assert 'upper' in dir(t)__

By default, all attributes and methods of the object you are composing are retained. In the below example, we compose a str object with the class _C. This allows us to directly call string methods on instances of class _C, such as str.lower() or str.upper():

class _C(GetAttr):
    # allow all attributes and methods to get passed to `self.default` (by leaving _xtra=None)
    def __init__(self,a): self.default = a
    def foo(self): noop

t = _C('Hi')
test_eq(t.lower(), 'hi')
test_eq(t.upper(), 'HI')
assert 'lower' in dir(t)
assert 'upper' in dir(t)__

However, you can choose which attributes or methods to retain by defining a class attribute _xtra, which is a list of allowed attribute and method names to delegate. In the below example, we only delegate the lower method from the composed str object when defining class _C:

class _C(GetAttr):
    _xtra = ['lower'] # specify which attributes get passed to `self.default`
    def __init__(self,a): self.default = a
    def foo(self): noop

t = _C('Hi')
test_eq(t.default, 'Hi')
test_eq(t.lower(), 'hi')
test_fail(lambda: t.upper()) # upper wasn't in _xtra, so it isn't available to be called
assert 'lower' in dir(t)
assert 'upper' not in dir(t)__

You must be careful to properly set an instance attribute in __init__ that corresponds to the class attribute _default. The below example sets the class attribute _default to data, but erroneously fails to define self.data (and instead defines self.default).

Failing to properly set instance attributes leads to errors when you try to access methods directly:

class _C(GetAttr):
    _default = 'data' # use a bad component name; i.e. self.data does not exist
    def __init__(self,a): self.default = a
    def foo(self): noop

# TODO: should we raise an error when we create a new instance ...
t = _C('Hi')
test_eq(t.default, 'Hi')
# ... or is it enough for all GetAttr features to raise errors
test_fail(lambda: t.data)
test_fail(lambda: t.lower())
test_fail(lambda: t.upper())
test_fail(lambda: dir(t))__

source

delegate_attr

>      delegate_attr (k, to)

Use in__getattr__ to delegate to attr to without inheriting from GetAttr

delegate_attr is a functional way to delegate attributes, and is an alternative to GetAttr. We recommend reading the documentation of GetAttr for more details around delegation.

You can use achieve delegation when you define __getattr__ by using delegate_attr:

class _C:
    def __init__(self, o): self.o = o # self.o corresponds to the `to` argument in delegate_attr.
    def __getattr__(self, k): return delegate_attr(self, k, to='o')


t = _C('HELLO') # delegates to a string
test_eq(t.lower(), 'hello')

t = _C(np.array([5,4,3])) # delegates to a numpy array
test_eq(t.sum(), 12)

t = _C(pd.DataFrame({'a': [1,2], 'b': [3,4]})) # delegates to a pandas.DataFrame
test_eq(t.b.max(), 4)__

Extensible Types

ShowPrint is a base class that defines a show method, which is used primarily for callbacks in fastai that expect this method to be defined.

Int, Float, and Str extend int, float and str respectively by adding an additional show method by inheriting from ShowPrint.

The code for Int is shown below:

Examples:

Int(0).show()
Float(2.0).show()
Str('Hello').show()__
0
2.0
Hello

Collection functions

Functions that manipulate popular python collections.


source

partition

>      partition (coll, f)

Partition a collection by a predicate

ts,fs = partition(range(10), mod(2))
test_eq(fs, [0,2,4,6,8])
test_eq(ts, [1,3,5,7,9])__

source

flatten

>      flatten (o)

Concatenate all collections and items as a generator


source

concat

>      concat (colls)

Concatenate all collections and items as a list

concat([(o for o in range(2)),[2,3,4], 5])__
[0, 1, 2, 3, 4, 5]
concat([["abc", "xyz"], ["foo", "bar"]])__
['abc', 'xyz', 'foo', 'bar']

source

strcat

>      strcat (its, sep:str='')

Concatenate stringified itemsits

test_eq(strcat(['a',2]), 'a2')
test_eq(strcat(['a',2], ';'), 'a;2')__

source

detuplify

>      detuplify (x)

Ifx is a tuple with one thing, extract it

test_eq(detuplify(()),None)
test_eq(detuplify([1]),1)
test_eq(detuplify([1,2]), [1,2])
test_eq(detuplify(np.array([[1,2]])), np.array([[1,2]]))__

source

replicate

>      replicate (item, match)

Create tuple ofitem copied len(match) times

t = [1,1]
test_eq(replicate([1,2], t),([1,2],[1,2]))
test_eq(replicate(1, t),(1,1))__

source

setify

>      setify (o)

Turn any list like-object into a set.

# test
test_eq(setify(None),set())
test_eq(setify('abc'),{'abc'})
test_eq(setify([1,2,2]),{1,2})
test_eq(setify(range(0,3)),{0,1,2})
test_eq(setify({1,2}),{1,2})__

source

merge

>      merge (*ds)

Merge all dictionaries inds

test_eq(merge(), {})
test_eq(merge(dict(a=1,b=2)), dict(a=1,b=2))
test_eq(merge(dict(a=1,b=2), dict(b=3,c=4), None), dict(a=1, b=3, c=4))__

source

range_of

>      range_of (x)

All indices of collectionx (i.e. list(range(len(x))))

test_eq(range_of([1,1,1,1]), [0,1,2,3])__

source

groupby

>      groupby (x, key, val=<function noop>)

Likeitertools.groupby but doesn’t need to be sorted, and isn’t lazy, plus some extensions

test_eq(groupby('aa ab bb'.split(), itemgetter(0)), {'a':['aa','ab'], 'b':['bb']})__

Here’s an example of how to invert a grouping, using an int as key (which uses itemgetter; passing a str will use attrgetter), and using a val function:

d = {0: [1, 3, 7], 2: [3], 3: [5], 4: [8], 5: [4], 7: [5]}
groupby(((o,k) for k,v in d.items() for o in v), 0, 1)__
{1: [0], 3: [0, 2], 7: [0], 5: [3, 7], 8: [4], 4: [5]}

source

last_index

>      last_index (x, o)

Finds the last index of occurence ofx in o (returns -1 if no occurence)

test_eq(last_index(9, [1, 2, 9, 3, 4, 9, 10]), 5)
test_eq(last_index(6, [1, 2, 9, 3, 4, 9, 10]), -1)__

source

filter_dict

>      filter_dict (d, func)

Filter adict using func, applied to keys and values

letters = {o:chr(o) for o in range(65,73)}
letters __
{65: 'A', 66: 'B', 67: 'C', 68: 'D', 69: 'E', 70: 'F', 71: 'G', 72: 'H'}
filter_dict(letters, lambda k,v: k<67 or v in 'FG')__
{65: 'A', 66: 'B', 70: 'F', 71: 'G'}

source

filter_keys

>      filter_keys (d, func)

Filter adict using func, applied to keys

filter_keys(letters, lt(67))__
{65: 'A', 66: 'B'}

source

filter_values

>      filter_values (d, func)

Filter adict using func, applied to values

filter_values(letters, in_('FG'))__
{70: 'F', 71: 'G'}

source

cycle

>      cycle (o)

Likeitertools.cycle except creates list of Nones if o is empty

test_eq(itertools.islice(cycle([1,2,3]),5), [1,2,3,1,2])
test_eq(itertools.islice(cycle([]),3), [None]*3)
test_eq(itertools.islice(cycle(None),3), [None]*3)
test_eq(itertools.islice(cycle(1),3), [1,1,1])__

source

zip_cycle

>      zip_cycle (x, *args)

Likeitertools.zip_longest but cycles through elements of all but first argument

test_eq(zip_cycle([1,2,3,4],list('abc')), [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'a')])__

source

sorted_ex

>      sorted_ex (iterable, key=None, reverse=False)

Likesorted, but if key is str use attrgetter; if int use itemgetter


source

not_

>      not_ (f)

Create new function that negates result off

def f(a): return a>0
test_eq(f(1),True)
test_eq(not_(f)(1),False)
test_eq(not_(f)(a=-1),True)__

source

argwhere

>      argwhere (iterable, f, negate=False, **kwargs)

Likefilter_ex, but return indices for matching items


source

filter_ex

>      filter_ex (iterable, f=<function noop>, negate=False, gen=False,
>                 **kwargs)

Likefilter, but passing kwargs to f, defaulting f to noop, and adding negate and gen


source

range_of

>      range_of (a, b=None, step=None)

All indices of collectiona, if a is a collection, otherwise range

test_eq(range_of([1,1,1,1]), [0,1,2,3])
test_eq(range_of(4), [0,1,2,3])__

source

renumerate

>      renumerate (iterable, start=0)

Same asenumerate, but returns index as 2nd element instead of 1st

test_eq(renumerate('abc'), (('a',0),('b',1),('c',2)))__

source

first

>      first (x, f=None, negate=False, **kwargs)

First element ofx, optionally filtered by f, or None if missing

test_eq(first(['a', 'b', 'c', 'd', 'e']), 'a')
test_eq(first([False]), False)
test_eq(first([False], noop), None)__

source

only

>      only (o)

Return the only item ofo, raise if o doesn’t have exactly one item


source

nested_attr

>      nested_attr (o, attr, default=None)

Same asgetattr, but if attr includes a ., then looks inside nested objects

a = SimpleNamespace(b=(SimpleNamespace(c=1)))
test_eq(nested_attr(a, 'b.c'), getattr(getattr(a, 'b'), 'c'))
test_eq(nested_attr(a, 'b.d'), None)__

source

nested_setdefault

>      nested_setdefault (o, attr, default)

Same assetdefault, but if attr includes a ., then looks inside nested objects


source

nested_callable

>      nested_callable (o, attr)

Same asnested_attr but if not found will return noop

a = SimpleNamespace(b=(SimpleNamespace(c=1)))
test_eq(nested_callable(a, 'b.c'), getattr(getattr(a, 'b'), 'c'))
test_eq(nested_callable(a, 'b.d'), noop)__

source

nested_idx

>      nested_idx (coll, *idxs)

Index into nested collections, dicts, etc, withidxs

a = {'b':[1,{'c':2}]}
test_eq(nested_idx(a, 'nope'), None)
test_eq(nested_idx(a, 'nope', 'nup'), None)
test_eq(nested_idx(a, 'b', 3), None)
test_eq(nested_idx(a), a)
test_eq(nested_idx(a, 'b'), [1,{'c':2}])
test_eq(nested_idx(a, 'b', 1), {'c':2})
test_eq(nested_idx(a, 'b', 1, 'c'), 2)__
a = SimpleNamespace(b=[1,{'c':2}])
test_eq(nested_idx(a, 'nope'), None)
test_eq(nested_idx(a, 'nope', 'nup'), None)
test_eq(nested_idx(a, 'b', 3), None)
test_eq(nested_idx(a), a)
test_eq(nested_idx(a, 'b'), [1,{'c':2}])
test_eq(nested_idx(a, 'b', 1), {'c':2})
test_eq(nested_idx(a, 'b', 1, 'c'), 2)__

source

set_nested_idx

>      set_nested_idx (coll, value, *idxs)

Set value indexed like `nested_idx

set_nested_idx(a, 3, 'b', 0)
test_eq(nested_idx(a, 'b', 0), 3)__

source

val2idx

>      val2idx (x)

Dict from value to index

test_eq(val2idx([1,2,3]), {3:2,1:0,2:1})__

source

uniqueify

>      uniqueify (x, sort=False, bidir=False, start=None)

Unique elements inx, optional sort, optional return reverse correspondence, optional prepend with elements.

t = [1,1,0,5,0,3]
test_eq(uniqueify(t),[1,0,5,3])
test_eq(uniqueify(t, sort=True),[0,1,3,5])
test_eq(uniqueify(t, start=[7,8,6]), [7,8,6,1,0,5,3])
v,o = uniqueify(t, bidir=True)
test_eq(v,[1,0,5,3])
test_eq(o,{1:0, 0: 1, 5: 2, 3: 3})
v,o = uniqueify(t, sort=True, bidir=True)
test_eq(v,[0,1,3,5])
test_eq(o,{0:0, 1: 1, 3: 2, 5: 3})__

source

loop_first_last

>      loop_first_last (values)

Iterate and generate a tuple with a flag for first and last value.

test_eq(loop_first_last(range(3)), [(True,False,0), (False,False,1), (False,True,2)])__

source

loop_first

>      loop_first (values)

Iterate and generate a tuple with a flag for first value.

test_eq(loop_first(range(3)), [(True,0), (False,1), (False,2)])__

source

loop_last

>      loop_last (values)

Iterate and generate a tuple with a flag for last value.

test_eq(loop_last(range(3)), [(False,0), (False,1), (True,2)])__

source

first_match

>      first_match (lst, f, default=None)

First element oflst matching predicate f, or default if none

a = [0,2,4,5,6,7,10]
test_eq(first_match(a, lambda o:o%2), 3)__

source

last_match

>      last_match (lst, f, default=None)

Last element oflst matching predicate f, or default if none

test_eq(last_match(a, lambda o:o%2), 5)__

fastuple

A tuple with extended functionality.


source

fastuple

>      fastuple (x=None, *rest)

Atuple with elementwise ops and more friendly init behavior

Friendly init behavior

Common failure modes when trying to initialize a tuple in python:

tuple(3)
> TypeError: 'int' object is not iterable __

or

tuple(3, 4)
> TypeError: tuple expected at most 1 arguments, got 2 __

However, fastuple allows you to define tuples like this and in the usual way:

test_eq(fastuple(3), (3,))
test_eq(fastuple(3,4), (3, 4))
test_eq(fastuple((3,4)), (3, 4))__

Elementwise operations


source

fastuple.add
>      fastuple.add (*args)

+ is already defined in tuple for concat, so use add instead

test_eq(fastuple.add((1,1),(2,2)), (3,3))
test_eq_type(fastuple(1,1).add(2), fastuple(3,3))
test_eq(fastuple('1','2').add('2'), fastuple('12','22'))__

source

fastuple.mul
>      fastuple.mul (*args)

* is already defined in tuple for replicating, so use mul instead

test_eq_type(fastuple(1,1).mul(2), fastuple(2,2))__

Other Elementwise Operations

Additionally, the following elementwise operations are available: - le: less than or equal - eq: equal - gt: greater than - min: minimum of

test_eq(fastuple(3,1).le(1), (False, True))
test_eq(fastuple(3,1).eq(1), (False, True))
test_eq(fastuple(3,1).gt(1), (True, False))
test_eq(fastuple(3,1).min(2), (2,1))__

You can also do other elementwise operations like negate a fastuple, or subtract two fastuples:

test_eq(-fastuple(1,2), (-1,-2))
test_eq(~fastuple(1,0,1), (False,True,False))

test_eq(fastuple(1,1)-fastuple(2,2), (-1,-1))__
test_eq(type(fastuple(1)), fastuple)
test_eq_type(fastuple(1,2), fastuple(1,2))
test_ne(fastuple(1,2), fastuple(1,3))
test_eq(fastuple(), ())__

Functions on Functions

Utilities for functional programming or for defining, modifying, or debugging functions.


source

bind

>      bind (func, *pargs, **pkwargs)

Same aspartial, except you can use arg0 arg1 etc param placeholders

bind is the same as partial, but also allows you to reorder positional arguments using variable name(s) arg{i} where i refers to the zero-indexed positional argument. bind as implemented currently only supports reordering of up to the first 5 positional arguments.

Consider the function myfunc below, which has 3 positional arguments. These arguments can be referenced as arg0, arg1, and arg1, respectively.

def myfn(a,b,c,d=1,e=2): return(a,b,c,d,e)__

In the below example we bind the positional arguments of myfn as follows:

  • The second input 14, referenced by arg1, is substituted for the first positional argument.
  • We supply a default value of 17 for the second positional argument.
  • The first input 19, referenced by arg0, is subsituted for the third positional argument.
test_eq(bind(myfn, arg1, 17, arg0, e=3)(19,14), (14,17,19,1,3))__

In this next example:

  • We set the default value to 17 for the first positional argument.
  • The first input 19 refrenced by arg0, becomes the second positional argument.
  • The second input 14 becomes the third positional argument.
  • We override the default the value for named argument e to 3.
test_eq(bind(myfn, 17, arg0, e=3)(19,14), (17,19,14,1,3))__

This is an example of using bind like partial and do not reorder any arguments:

test_eq(bind(myfn)(17,19,14), (17,19,14,1,2))__

bind can also be used to change default values. In the below example, we use the first input 3 to override the default value of the named argument e, and supply default values for the first three positional arguments:

test_eq(bind(myfn, 17,19,14,e=arg0)(3), (17,19,14,1,3))__

source

mapt

>      mapt (func, *iterables)

Tuplifiedmap

t = [0,1,2,3]
test_eq(mapt(operator.neg, t), (0,-1,-2,-3))__

source

map_ex

>      map_ex (iterable, f, *args, gen=False, **kwargs)

Likemap, but use bind, and supports str and indexing

test_eq(map_ex(t,operator.neg), [0,-1,-2,-3])__

If f is a string then it is treated as a format string to create the mapping:

test_eq(map_ex(t, '#{}#'), ['#0#','#1#','#2#','#3#'])__

If f is a dictionary (or anything supporting __getitem__) then it is indexed to create the mapping:

test_eq(map_ex(t, list('abcd')), list('abcd'))__

You can also pass the same arg params that bind accepts:

def f(a=None,b=None): return b
test_eq(map_ex(t, f, b=arg0), range(4))__

source

compose

>      compose (*funcs, order=None)

Create a function that composes all functions infuncs, passing along remaining *args and **kwargs to all

f1 = lambda o,p=0: (o*2)+p
f2 = lambda o,p=1: (o+1)/p
test_eq(f2(f1(3)), compose(f1,f2)(3))
test_eq(f2(f1(3,p=3),p=3), compose(f1,f2)(3,p=3))
test_eq(f2(f1(3,  3),  3), compose(f1,f2)(3,  3))

f1.order = 1
test_eq(f1(f2(3)), compose(f1,f2, order="order")(3))__

source

maps

>      maps (*args, retain=<function noop>)

Likemap, except funcs are composed first

test_eq(maps([1]), [1])
test_eq(maps(operator.neg, [1,2]), [-1,-2])
test_eq(maps(operator.neg, operator.neg, [1,2]), [1,2])__

source

partialler

>      partialler (f, *args, order=None, **kwargs)

Likefunctools.partial but also copies over docstring

def _f(x,a=1):
    "test func"
    return x-a
_f.order=1

f = partialler(_f, 2)
test_eq(f.order, 1)
test_eq(f(3), -1)
f = partialler(_f, a=2, order=3)
test_eq(f.__doc__, "test func")
test_eq(f.order, 3)
test_eq(f(3), _f(3,2))__
class partial0:
    "Like `partialler`, but args passed to callable are inserted at started, instead of at end"
    def __init__(self, f, *args, order=None, **kwargs):
        self.f,self.args,self.kwargs = f,args,kwargs
        self.order = ifnone(order, getattr(f,'order',None))
        self.__doc__ = f.__doc__

    def __call__(self, *args, **kwargs): return self.f(*args, *self.args, **kwargs, **self.kwargs)__
f = partial0(_f, 2)
test_eq(f.order, 1)
test_eq(f(3), 1) # NB: different to `partialler` example __

source

instantiate

>      instantiate (t)

Instantiatet if it’s a type, otherwise do nothing

test_eq_type(instantiate(int), 0)
test_eq_type(instantiate(1), 1)__

source

using_attr

>      using_attr (f, attr)

Construct a function which appliesf to the argument’s attribute attr

t = Path('/a/b.txt')
f = using_attr(str.upper, 'name')
test_eq(f(t), 'B.TXT')__

Self (with an uppercase S)

A Concise Way To Create Lambdas

This is a concise way to create lambdas that are calling methods on an object (note the capitalization!)

Self.sum(), for instance, is a shortcut for lambda o: o.sum().

f = Self.sum()
x = np.array([3.,1])
test_eq(f(x), 4.)

# This is equivalent to above
f = lambda o: o.sum()
x = np.array([3.,1])
test_eq(f(x), 4.)

f = Self.argmin()
arr = np.array([1,2,3,4,5])
test_eq(f(arr), arr.argmin())

f = Self.sum().is_integer()
x = np.array([3.,1])
test_eq(f(x), True)

f = Self.sum().real.is_integer()
x = np.array([3.,1])
test_eq(f(x), True)

f = Self.imag()
test_eq(f(3), 0)

f = Self[1]
test_eq(f(x), 1)__

Self is also callable, which creates a function which calls any function passed to it, using the arguments passed to Self:

def f(a, b=3): return a+b+2
def g(a, b=3): return a*b
fg = Self(1,b=2)
list(map(fg, [f,g]))__
[5, 2]

Patching


source

copy_func

>      copy_func (f)

Copy a non-builtin function (NBcopy.copy does not work for this)

Sometimes it may be desirable to make a copy of a function that doesn’t point to the original object. When you use Python’s built in copy.copy or copy.deepcopy to copy a function, you get a reference to the original object:

import copy as cp __
def foo(): pass
a = cp.copy(foo)
b = cp.deepcopy(foo)

a.someattr = 'hello' # since a and b point at the same object, updating a will update b
test_eq(b.someattr, 'hello')

assert a is foo and b is foo __

However, with copy_func, you can retrieve a copy of a function without a reference to the original object:

c = copy_func(foo) # c is an indpendent object
assert c is not foo __
def g(x, *, y=3): return x+y
test_eq(copy_func(g)(4), 7)__

source

patch_to

>      patch_to (cls, as_prop=False, cls_method=False)

Decorator: addf to cls

The @patch_to decorator allows you to monkey patch a function into a class as a method:

class _T3(int): pass  

@patch_to(_T3)
def func1(self, a): return self+a

t = _T3(1) # we initialized `t` to a type int = 1
test_eq(t.func1(2), 3) # we add 2 to `t`, so 2 + 1 = 3 __

You can access instance properties in the usual way via self:

class _T4():
    def __init__(self, g): self.g = g

@patch_to(_T4)
def greet(self, x): return self.g + x

t = _T4('hello ') # this sets self.g = 'hello '
test_eq(t.greet('world'), 'hello world') #t.greet('world') will append 'world' to 'hello '__

You can instead specify that the method should be a class method by setting cls_method=True:

class _T5(int): attr = 3 # attr is a class attribute we will access in a later method

@patch_to(_T5, cls_method=True)
def func(cls, x): return cls.attr + x # you can access class attributes in the normal way

test_eq(_T5.func(4), 7)__

Additionally you can specify that the function you want to patch should be a class attribute with as_prop=True:

@patch_to(_T5, as_prop=True)
def add_ten(self): return self + 10

t = _T5(4)
test_eq(t.add_ten, 14)__

Instead of passing one class to the @patch_to decorator, you can pass multiple classes in a tuple to simulteanously patch more than one class with the same method:

class _T6(int): pass
class _T7(int): pass

@patch_to((_T6,_T7))
def func_mult(self, a): return self*a

t = _T6(2)
test_eq(t.func_mult(4), 8)
t = _T7(2)
test_eq(t.func_mult(4), 8)__

source

patch

>      patch (f=None, as_prop=False, cls_method=False)

Decorator: addf to the first parameter’s class (based on f’s type annotations)

@patch is an alternative to @patch_to that allows you similarly monkey patch class(es) by using type annotations:

class _T8(int): pass  

@patch
def func(self:_T8, a): return self+a

t = _T8(1)  # we initilized `t` to a type int = 1
test_eq(t.func(3), 4) # we add 3 to `t`, so 3 + 1 = 4
test_eq(t.func.__qualname__, '_T8.func')__

Similarly to patch_to, you can supply a union of classes instead of a single class in your type annotations to patch multiple classes:

class _T9(int): pass 

@patch
def func2(x:_T8|_T9, a): return x*a # will patch both _T8 and _T9

t = _T8(2)
test_eq(t.func2(4), 8)
test_eq(t.func2.__qualname__, '_T8.func2')

t = _T9(2)
test_eq(t.func2(4), 8)
test_eq(t.func2.__qualname__, '_T9.func2')__

Just like patch_to decorator you can use as_prop and cls_method parameters with patch decorator:

@patch(as_prop=True)
def add_ten(self:_T5): return self + 10

t = _T5(4)
test_eq(t.add_ten, 14)__
class _T5(int): attr = 3 # attr is a class attribute we will access in a later method

@patch(cls_method=True)
def func(cls:_T5, x): return cls.attr + x # you can access class attributes in the normal way

test_eq(_T5.func(4), 7)__

source

patch_property

>      patch_property (f)

Deprecated; usepatch(as_prop=True) instead

Patching classmethod shouldn’t affect how python’s inheritance works

class FastParent: pass

@patch(cls_method=True)
def type_cls(cls: FastParent): return cls

class FastChild(FastParent): pass

parent = FastParent()
test_eq(parent.type_cls(), FastParent)

child = FastChild()
test_eq(child.type_cls(), FastChild)__

Other Helpers


source

compile_re

>      compile_re (pat)

Compilepat if it’s not None

assert compile_re(None) is None
assert compile_re('a').match('ab')__

source

ImportEnum

>      ImportEnum (value, names=None, module=None, qualname=None, type=None,
>                  start=1)

AnEnum that can have its values imported

_T = ImportEnum('_T', {'foobar':1, 'goobar':2})
_T.imports()
test_eq(foobar, _T.foobar)
test_eq(goobar, _T.goobar)__

source

StrEnum

>      StrEnum (value, names=None, module=None, qualname=None, type=None,
>               start=1)

AnImportEnum that behaves like a str


source

str_enum

>      str_enum (name, *vals)

Simplified creation ofStrEnum types


source

ValEnum

>      ValEnum (value, names=None, module=None, qualname=None, type=None,
>               start=1)

AnImportEnum that stringifies using values

_T = str_enum('_T', 'a', 'b')
test_eq(f'{_T.a}', 'a')
test_eq(_T.a, 'a')
test_eq(list(_T.__members__), ['a','b'])
print(_T.a, _T.a.upper())__
a A

source

Stateful

>      Stateful (*args, **kwargs)

A base class/mixin for objects that should not serialize all their state

class _T(Stateful):
    def __init__(self):
        super().__init__()
        self.a=1
        self._state['test']=2

t = _T()
t2 = pickle.loads(pickle.dumps(t))
test_eq(t.a,1)
test_eq(t._state['test'],2)
test_eq(t2.a,1)
test_eq(t2._state,{})__

Override _init_state to do any necessary setup steps that are required during __init__ or during deserialization (e.g. pickle.load). Here’s an example of how Stateful simplifies the official Python example for Handling Stateful Objects.

class TextReader(Stateful):
    """Print and number lines in a text file."""
    _stateattrs=('file',)
    def __init__(self, filename):
        self.filename,self.lineno = filename,0
        super().__init__()

    def readline(self):
        self.lineno += 1
        line = self.file.readline()
        if line: return f"{self.lineno}: {line.strip()}"

    def _init_state(self):
        self.file = open(self.filename)
        for _ in range(self.lineno): self.file.readline()__
reader = TextReader("00_test.ipynb")
print(reader.readline())
print(reader.readline())

new_reader = pickle.loads(pickle.dumps(reader))
print(reader.readline())__
1: {
2: "cells": [
3: {

source

NotStr

>      NotStr (s)

Behaves like astr, but isn’t an instance of one

s = NotStr("hello")
assert not isinstance(s, str)
test_eq(s, 'hello')
test_eq(s*2, 'hellohello')
test_eq(len(s), 5)__

source

PrettyString

Little hack to get strings to show properly in Jupyter.

Allow strings with special characters to render properly in Jupyter. Without calling print() strings with special characters are displayed like so:

with_special_chars='a string\nwith\nnew\nlines and\ttabs'
with_special_chars __
'a string\nwith\nnew\nlines and\ttabs'

We can correct this with PrettyString:

PrettyString(with_special_chars)__
a string
with
new
lines and   tabs

source

even_mults

>      even_mults (start, stop, n)

Build log-stepped array fromstart to stop in n steps.

test_eq(even_mults(2,8,3), [2,4,8])
test_eq(even_mults(2,32,5), [2,4,8,16,32])
test_eq(even_mults(2,8,1), 8)__

source

num_cpus

>      num_cpus ()

Get number of cpus

num_cpus()__
8

source

add_props

>      add_props (f, g=None, n=2)

Create properties passing each ofrange(n) to f

class _T(): a,b = add_props(lambda i,x:i*2)

t = _T()
test_eq(t.a,0)
test_eq(t.b,2)__
class _T(): 
    def __init__(self, v): self.v=v
    def _set(i, self, v): self.v[i] = v
    a,b = add_props(lambda i,x: x.v[i], _set)

t = _T([0,2])
test_eq(t.a,0)
test_eq(t.b,2)
t.a = t.a+1
t.b = 3
test_eq(t.a,1)
test_eq(t.b,3)__

source

typed

>      typed (f)

Decorator to check param and return types at runtime

typed validates argument types at runtime. This is in contrast to MyPy which only offers static type checking.

For example, a TypeError will be raised if we try to pass an integer into the first argument of the below function:

@typed
def discount(price:int, pct:float): 
    return (1-pct) * price

with ExceptionExpected(TypeError): discount(100.0, .1)__

We can also optionally allow multiple types by enumarating the types in a tuple as illustrated below:

def discount(price:int|float, pct:float): 
    return (1-pct) * price

assert 90.0 == discount(100.0, .1)__
@typed
def foo(a:int, b:str='a'): return a
test_eq(foo(1, '2'), 1)

with ExceptionExpected(TypeError): foo(1,2)

@typed
def foo()->str: return 1
with ExceptionExpected(TypeError): foo()

@typed
def foo()->str: return '1'
assert foo()__

typed works with classes, too:

class Foo:
    @typed
    def __init__(self, a:int, b: int, c:str): pass
    @typed
    def test(cls, d:str): return d

with ExceptionExpected(TypeError): Foo(1, 2, 3) 
with ExceptionExpected(TypeError): Foo(1,2, 'a string').test(10)__

source

exec_new

>      exec_new (code)

Executecode in a new environment and return it

g = exec_new('a=1')
test_eq(g['a'], 1)__

source

exec_import

>      exec_import (mod, sym)

Importsym from mod in a new environment


source

str2bool

>      str2bool (s)

Case-insensitive convert strings too a bool (y,yes,t,true,on,1->True)

True values are ‘y’, ‘yes’, ‘t’, ‘true’, ‘on’, and ‘1’; false values are ‘n’, ‘no’, ‘f’, ‘false’, ‘off’, and ‘0’. Raises ValueError if ‘val’ is anything else.

for o in "y YES t True on 1".split(): assert str2bool(o)
for o in "n no FALSE off 0".split(): assert not str2bool(o)
for o in 0,None,'',False: assert not str2bool(o)
for o in 1,True: assert str2bool(o)__

Notebook functions


ipython_shell

>      ipython_shell ()

Same asget_ipython but returns False if not in IPython


in_ipython

>      in_ipython ()

Check if code is running in some kind of IPython environment


in_colab

>      in_colab ()

Check if the code is running in Google Colaboratory


in_jupyter

>      in_jupyter ()

Check if the code is running in a jupyter notebook


in_notebook

>      in_notebook ()

Check if the code is running in a jupyter notebook

These variables are available as booleans in fastcore.basics as IN_IPYTHON, IN_JUPYTER, IN_COLAB and IN_NOTEBOOK.

IN_IPYTHON, IN_JUPYTER, IN_COLAB, IN_NOTEBOOK __
(True, True, False, True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment