-
-
Save han-tun/bfa2a0137e293c89b4107d059a4dfc12 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidycensus) | |
library(tigris) | |
library(tidyverse) | |
library(sf) | |
library(ggiraph) | |
library(patchwork) | |
options(tigris_use_cache = TRUE) | |
set.seed(123456) | |
# Get a list of counties within the Austin CBSA using tigris | |
austin_counties <- counties(year = 2021) %>% | |
filter(CBSAFP == "12420") %>% | |
pull(COUNTYFP) | |
# Pull data on income, age, and total population from tidycensus, | |
# then compute population density | |
austin_inputs <- get_acs( | |
geography = "tract", | |
variables = c(median_income = "B19013_001", | |
median_age = "B01002_001", | |
total_population = "B01003_001"), | |
state = "TX", | |
county = austin_counties, | |
output = "wide", | |
geometry = TRUE, | |
keep_geo_vars = TRUE | |
) %>% | |
mutate(pop_density = total_populationE / (ALAND / 2589988.11 )) %>% | |
na.omit() | |
# Use k-means to cluster Census tracts by demographic characteristics | |
austin_kmeans <- austin_inputs %>% | |
st_drop_geometry() %>% | |
select(median_incomeE, median_ageE, pop_density) %>% | |
scale() %>% | |
kmeans(centers = 6) | |
austin_clusters <- austin_inputs %>% | |
mutate(cluster = as.character(austin_kmeans$cluster)) | |
# Build a map of clusters with ggplot2, ready for use with ggiraph | |
austin_map <- ggplot(austin_clusters, aes(fill = cluster, data_id = GEOID)) + | |
geom_sf_interactive(size = 0.1) + | |
scale_fill_brewer(palette = "Set1") + | |
theme_void() + | |
labs(fill = "Cluster ") | |
# Make a scatterplot of cluster characteristics for linking to the map | |
austin_plot <- ggplot(austin_clusters, | |
aes(x = median_incomeE, y = pop_density, color = cluster, data_id = GEOID)) + | |
geom_point_interactive() + | |
scale_color_brewer(palette = "Set1") + | |
scale_y_log10() + | |
scale_x_continuous(labels = scales::dollar_format()) + | |
theme_minimal(base_size = 12) + | |
labs(color = "Cluster", | |
x = "Median household income", | |
y = "Population density (logged)") | |
# Use ggiraph and patchwork to allow for linked brushing - it just works! | |
girafe(ggobj = austin_map + austin_plot, width_svg = 10, height_svg = 5.5) %>% | |
girafe_options(opts_zoom(min = 1, max = 8), | |
opts_selection( | |
css = "fill:cyan;", | |
only_shiny = FALSE) | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment