Last active
May 7, 2023 11:36
-
-
Save hannes-brt/54ca5d4094b3d96237fa2e820c0945dd to your computer and use it in GitHub Desktop.
One-hot encoding DNA with TensorFlow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2019 Hannes Bretschneider | |
# | |
# Permission is hereby granted, free of charge, to any person | |
# obtaining a copy of this software and associated documentation | |
# files (the "Software"), to deal in the Software without | |
# restriction, including without limitation the rights to use, | |
# copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the | |
# Software is furnished to do so, subject to the following | |
# conditions: | |
# | |
# The above copyright notice and this permission notice shall be | |
# included in all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | |
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | |
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | |
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |
# OTHER DEALINGS IN THE SOFTWARE. | |
import numpy as np | |
import tensorflow as tf | |
import twobitreader | |
import timeit | |
def tf_dna_encode_lookup_table(seq, name="dna_encode"): | |
"""Map DNA string inputs to integer ids using a lookup table.""" | |
with tf.name_scope(name): | |
# Defining the lookup table | |
mapping_strings = tf.constant(["A", "C", "G", "T"]) | |
table = tf.contrib.lookup.index_table_from_tensor( | |
mapping=mapping_strings, num_oov_buckets=0, default_value=-1) | |
# Splitting the string into single characters | |
seq = tf.squeeze( | |
tf.sparse.to_dense( | |
tf.string_split([seq], delimiter=""), | |
default_value=""), 0) | |
return table.lookup(seq) | |
def tf_dna_encode_bit_manipulation(seq, name='dna_encode'): | |
with tf.name_scope(name): | |
bytes = tf.decode_raw(seq, tf.uint8) | |
bytes = tf.bitwise.bitwise_and(bytes, ~(1 << 6)) | |
bytes = tf.bitwise.bitwise_and(bytes, ~(1 << 4)) | |
bytes = tf.bitwise.right_shift(bytes, 1) | |
mask = tf.bitwise.bitwise_and(bytes, 2) | |
mask = tf.bitwise.right_shift(mask, 1) | |
bytes = tf.bitwise.bitwise_xor(bytes, mask) | |
return bytes | |
#%% | |
def tf_dna_encode_embedding_table(dna_input, name="dna_encode"): | |
"""Map DNA sequence to one-hot encoding using an embedding table.""" | |
# Define the embedding table | |
_embedding_values = np.zeros([89, 4], np.float32) | |
_embedding_values[ord('A')] = np.array([1, 0, 0, 0]) | |
_embedding_values[ord('C')] = np.array([0, 1, 0, 0]) | |
_embedding_values[ord('G')] = np.array([0, 0, 1, 0]) | |
_embedding_values[ord('T')] = np.array([0, 0, 0, 1]) | |
_embedding_values[ord('W')] = np.array([.5, 0, 0, .5]) | |
_embedding_values[ord('S')] = np.array([0, .5, .5, 0]) | |
_embedding_values[ord('M')] = np.array([.5, .5, 0, 0]) | |
_embedding_values[ord('K')] = np.array([0, 0, .5, .5]) | |
_embedding_values[ord('R')] = np.array([.5, 0, .5, 0]) | |
_embedding_values[ord('Y')] = np.array([0, .5, 0, .5]) | |
_embedding_values[ord('B')] = np.array([0, 1. / 3, 1. / 3, 1. / 3]) | |
_embedding_values[ord('D')] = np.array([1. / 3, 0, 1. / 3, 1. / 3]) | |
_embedding_values[ord('H')] = np.array([1. / 3, 1. / 3, 0, 1. / 3]) | |
_embedding_values[ord('V')] = np.array([1. / 3, 1. / 3, 1. / 3, 0]) | |
_embedding_values[ord('N')] = np.array([.25, .25, .25, .25]) | |
embedding_table = tf.get_variable( | |
'dna_lookup_table', _embedding_values.shape, | |
initializer=tf.constant_initializer(_embedding_values), | |
trainable=False) # Ensure that embedding table is not trained | |
with tf.name_scope(name): | |
dna_input = tf.decode_raw(dna_input, tf.uint8) # Interpret string as bytes | |
dna_32 = tf.cast(dna_input, tf.int32) | |
encoded_dna = tf.nn.embedding_lookup(embedding_table, dna_32) | |
return encoded_dna | |
#%% | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"genome_file", help="Location to genome 2bit file (hg38)") | |
parser.add_argument( | |
"-N", type=int, help="Number of iterations for each method") | |
parser.add_argument("-r", type=int, help="Number of repeats") | |
args = parser.parse_args() | |
# Extract DMD sequence and compute reverse complement | |
genome = twobitreader.TwoBitFile(args.genome_file) | |
dmd_sequence = genome['chrX'][31097676:33339441].upper() | |
def reverse_complement(seq): | |
return "".join("TGCA"["ACGT".index(s)] for s in seq[::-1]) | |
dmd_sequence_r = reverse_complement(dmd_sequence) | |
# Set up TensorFlow graph | |
seq_t = tf.constant(dmd_sequence_r, tf.string) | |
seq_encoded_bit_manip_t = tf.one_hot(tf_dna_encode_bit_manipulation(seq_t), 4) | |
seq_encoded_lookup_t = tf.one_hot(tf_dna_encode_lookup_table(seq_t), 4) | |
seq_encoded_embedding_table_t = tf_dna_encode_embedding_table(seq_t) | |
# TensorFlow boilerplate | |
session = tf.Session() | |
with session.as_default(): | |
tf.tables_initializer().run() | |
tf.global_variables_initializer().run() | |
# Now benchmark each method | |
print("### Benchmarking bit manipulation method ###") | |
results = timeit.repeat(lambda: session.run(seq_encoded_bit_manip_t), | |
number=args.N, repeat=args.r) | |
print("""Bit manipulation method ({} iterations, {} repeats): | |
Total time: {} | |
Best time: {} | |
""".format(args.N, args.r, sum(results), min(results))) | |
print("### Benchmarking embedding table method ###") | |
results = timeit.repeat(lambda: session.run(seq_encoded_embedding_table_t), | |
number=args.N, repeat=args.r) | |
print("""Embedding table method ({} iterations, {} repeats): | |
Total time: {} | |
Best time: {} | |
""".format(args.N, args.r, sum(results), min(results))) | |
print("### Benchmarking lookup table method ###") | |
results = timeit.repeat(lambda: session.run(seq_encoded_lookup_t), | |
number=args.N, repeat=args.r) | |
print("""Lookup table method ({} iterations, {} repeats): | |
Total time: {} | |
Best time: {} | |
""".format(args.N, args.r, sum(results), min(results))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment