Created
May 9, 2017 08:37
-
-
Save haokaibo/a1a1362edf5c1bf99d265a23fe8b4361 to your computer and use it in GitHub Desktop.
Test code for Collective Intelligence.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?xml version="1.0" encoding="UTF-8"?> | |
<module type="PYTHON_MODULE" version="4"> | |
<component name="NewModuleRootManager"> | |
<content url="file://$MODULE_DIR$" /> | |
<orderEntry type="inheritedJdk" /> | |
<orderEntry type="sourceFolder" forTests="false" /> | |
</component> | |
<component name="PackageRequirementsSettings"> | |
<option name="requirementsPath" value="" /> | |
</component> | |
<component name="TestRunnerService"> | |
<option name="PROJECT_TEST_RUNNER" value="Unittests" /> | |
</component> | |
</module> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?xml version="1.0" encoding="UTF-8"?> | |
<project version="4"> | |
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.5.2 (~/anaconda/bin/python)" project-jdk-type="Python SDK" /> | |
</project> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<?xml version="1.0" encoding="UTF-8"?> | |
<project version="4"> | |
<component name="ProjectModuleManager"> | |
<modules> | |
<module fileurl="file://$PROJECT_DIR$/.idea/CollectiveIntelligence.iml" filepath="$PROJECT_DIR$/.idea/CollectiveIntelligence.iml" /> | |
</modules> | |
</component> | |
</project> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# A dictionary of movie critics and their ratings of a small | |
# set of movies | |
from math import sqrt | |
critics = {'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, | |
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, | |
'The Night Listener': 3.0}, | |
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, | |
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, | |
'You, Me and Dupree': 3.5}, | |
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, | |
'Superman Returns': 3.5, 'The Night Listener': 4.0}, | |
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, | |
'The Night Listener': 4.5, 'Superman Returns': 4.0, | |
'You, Me and Dupree': 2.5}, | |
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, | |
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, | |
'You, Me and Dupree': 2.0}, | |
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, | |
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5}, | |
'Toby': {'Snakes on a Plane': 4.5, 'You, Me and Dupree': 1.0, 'Superman Returns': 4.0}} | |
# Returns a distance-based similarity score for person1 and person2 | |
def sim_distance(prefs, person1, person2): | |
# Get the list of shared_items | |
si = {} | |
for item in prefs[person1]: | |
if item in prefs[person2]: | |
si[item] = 1 | |
# if they have no ratings in common, return 0 | |
if len(si) == 0: return 0 | |
# Add up the squares of all the differences | |
sum_of_squares = sum([pow(prefs[person1][item] - prefs[person2][item], 2) | |
for item in prefs[person1] if item in prefs[person2]]) | |
return 1 / (1 + sum_of_squares) | |
# Returns the Pearson correlation coefficient for p1 and p2 | |
def sim_pearson(prefs, p1, p2): | |
# Get the list of mutually rated items | |
si = {} | |
for item in prefs[p1]: | |
if item in prefs[p2]: si[item] = 1 | |
# Find the number of elements | |
n = len(si) | |
# if they are no ratings in common, return 0 | |
if n == 0: return 0 | |
# Add up all the preferences | |
sum1 = sum([prefs[p1][it] for it in si]) | |
sum2 = sum([prefs[p2][it] for it in si]) | |
# Sum up the squares | |
sum1Sq = sum([pow(prefs[p1][it], 2) for it in si]) | |
sum2Sq = sum([pow(prefs[p2][it], 2) for it in si]) | |
# Sum up the products | |
pSum = sum([prefs[p1][it] * prefs[p2][it] for it in si]) | |
# Calculate Pearson score | |
num = pSum - (sum1 * sum2 / n) | |
den = sqrt((sum1Sq - pow(sum1, 2) / n) * (sum2Sq - pow(sum2, 2) / n)) | |
if den == 0: return 0 | |
r = num / den | |
return r | |
# Returns the best matches for person from the prefs dictionary. | |
# Number of results and similarity function are optional params. | |
def topMatches(prefs, person, n=5, similarity=sim_pearson): | |
scores = [(similarity(prefs, person, other), other) | |
for other in prefs if other != person] | |
# Sort the list so the highest scores appear at the top | |
scores.sort(reverse=True) | |
return scores[0:n] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import unittest | |
import logging | |
from recommend.recommendations import critics, sim_distance, sim_pearson, topMatches | |
class RecommendationsTest(unittest.TestCase): | |
def setUp(self): | |
logging.basicConfig(level=logging.INFO) | |
self.base_dir = os.path.join(os.path.dirname(os.path.realpath(__file__))) | |
if not os.path.exists(self.base_dir): | |
os.makedirs(self.base_dir) | |
def tearDown(self): | |
pass | |
def test_sim_distance(self): | |
r = sim_distance(critics, 'Lisa Rose', 'Gene Seymour') | |
self.assertEqual(0.14814814814814814, r) | |
def test_sim_pearson(self): | |
r = sim_pearson(critics, 'Lisa Rose', 'Gene Seymour') | |
self.assertEqual(0.39605901719066977, r) | |
def test_topMatches_with_sim_pearson_method(self): | |
r = topMatches(critics, 'Toby', n=3) | |
self.assertEqual( | |
"[(0.9912407071619299, 'Lisa Rose'), (0.9244734516419049, 'Mick LaSalle'), (0.8934051474415647, 'Claudia Puig')]", | |
str(r)) | |
if __name__ == '__main__': | |
unittest.main(warnings='ignore') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment