Created
May 13, 2016 07:01
-
-
Save haoliplus/14b919e744084f75f6f9b70debd4a5d8 to your computer and use it in GitHub Desktop.
Using Mxnet model to predict
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! /usr/bin/env python | |
################################################################################# | |
# File Name : test-one.py | |
# Created By : Hao Li | |
# Creation Date : [2016-04-08 13:44] | |
# Last Modified : [2016-04-26 13:49] | |
# Description : | |
################################################################################# | |
import os | |
import sys | |
import time | |
import numpy | |
import LabelIndex | |
from skimage import io,transform | |
import logging | |
import numpy as np | |
sys.path.insert(0, "/mnt/disk0/lihao/plate-test/libs") | |
import mxnet as mx | |
class MxnetModel(): | |
def convert_mean_file(self, mean_filename): | |
pass | |
def get_mean(self, mean_filename): | |
return npy.mean(1).mean(1) | |
def __init__(self, data_name="current"): | |
mxnet_judge_rounds = 70 | |
mx_net_judge_prefix = "/mnt/disk0/lihao/plate-test/data/mxnet-model/platenet-100-0" | |
epoch = 70 | |
device_id = 0 | |
self.model = mx.model.FeedForward.load(mx_net_judge_prefix, int(mxnet_judge_rounds), | |
ctx=mx.gpu(device_id), numpy_batch_size=1) | |
def predict(self, segments): | |
resized_imgs = [transform.resize(io.imread(path), (64,64)) for path in segments] | |
swapped_imgs = np.swapaxes(np.swapaxes(np.asarray(resized_imgs) * 256, 1, 3), 2, 3) | |
probs = self.model.predict(swapped_imgs) | |
return probs |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment