Last active
July 29, 2017 09:15
-
-
Save haoliplus/dac634c50811a7437448aec2290c526b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding:utf-8 -*- | |
#! /usr/bin/env python | |
################################################################################# | |
# File Name : csv_reader.py | |
# Created By : Hao Li | |
# Creation Date : [2017-02-24 20:41] | |
# Last Modified : [2017-02-25 10:09] | |
# Description : | |
################################################################################# | |
import tensorflow as tf | |
# filename_queue = tf.train.string_input_producer(["data1.csv", "data2.csv"], shuffle=True) | |
filename_queue = tf.train.string_input_producer(["data0.csv"], shuffle=True, num_epochs=1) | |
reader = tf.TextLineReader() | |
key, value = reader.read(filename_queue) | |
# Default values, in case of empty columns. Also specifies the type of the | |
# decoded result. | |
record_defaults = [[1], [1], [1], [1], [1]] | |
col1, col2, col3, col4, col5 = tf.decode_csv( | |
value, record_defaults=record_defaults | |
) | |
features = tf.stack([col1, col2, col3, col4]) | |
batch_size = 8 | |
min_after_dequeue = 10 | |
capacity = min_after_dequeue + 2 * batch_size | |
feature_batch, label_batch = tf.train.shuffle_batch( | |
[features, col5], batch_size=batch_size, capacity=capacity, | |
min_after_dequeue=min_after_dequeue, allow_smaller_final_batch=True | |
) | |
# tf.initialize_all_variables() | |
with tf.Session() as sess: | |
# Start populating the filename queue. | |
# sess.run(tf.initialize_all_variables()) | |
sess.run(tf.local_variables_initializer()) | |
coord = tf.train.Coordinator() | |
threads = tf.train.start_queue_runners(coord=coord) | |
try: | |
while not coord.should_stop(): | |
# for _ in range(60): | |
# Retrieve a single instance: | |
# example, label = sess.run([features, col5]) | |
examples, labels = sess.run([feature_batch, label_batch]) | |
# print(example, label) | |
print(examples, labels) | |
except Exception as e: | |
coord.request_stop(e) | |
print("Exception ") | |
finally: | |
coord.request_stop() | |
coord.join(threads) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment