Install working tensorflow or pytorch via standard conda environment workflow.
The recommended conda-based install process works smoothly:
$ # Create a fresh environment| from sklearn.metrics import ( | |
| average_precision_score, | |
| f1_score, | |
| roc_auc_score, | |
| precision_score, | |
| recall_score, | |
| accuracy_score | |
| ) | |
| def evaluate_bi_cls(y_true, y_pred): |
| --- | |
| title: "Untitled" | |
| output: html_document | |
| --- | |
| ```{r setup, include=FALSE} | |
| knitr::opts_chunk$set(message = FALSE) | |
| ``` | |
| ## R Markdown |
| #' Generate fixed width file in R | |
| #' @description This simple function creates fixed width file with no | |
| #' extra dependencies. | |
| #' @param justify "l", "r" or something like "lrl" for left, right, left. | |
| #' @examples dt <- data.frame(a = 1:3, b = NA, c = c('a', 'b', 'c')) | |
| #' write_fwf(dt, "test.txt", width = c(4, 4, 3)) | |
| #' @export | |
| write_fwf = function(dt, file, width, | |
| justify = "l", replace_na = "NA") { | |
| fct_col = which(sapply(dt, is.factor)) |
| --- | |
| title: "Untitled" | |
| author: "Hao" | |
| date: "7/10/2019" | |
| output: pdf_document | |
| --- | |
| ```{r setup, include=FALSE} | |
| knitr::opts_chunk$set(echo = TRUE) | |
| ``` |
| /*! | |
| * Bootstrap v3.3.7 (http://getbootstrap.com) | |
| * Copyright 2011-2018 Twitter, Inc. | |
| * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE) | |
| */ | |
| /*! | |
| * Generated using the Bootstrap Customizer (<none>) | |
| * Config saved to config.json and <none> |
| library(broom) | |
| library(tidyverse) | |
| library(viridis) | |
| fit <- lm(mpg ~ ., data = mtcars) | |
| fit_dt <- tidy(fit, conf.int = T) | |
| # reverse the order so it looks right on plot |
| library(shiny) | |
| library(imager) | |
| library(colocr) | |
| # Define UI for application that draws a histogram | |
| ui <- navbarPage( | |
| title = 'colocr', | |
| tabPanel( | |
| 'Main', | |
| sidebarLayout( |