-
-
Save happytm/8c9bfd539e810ecfa68997439d54093f to your computer and use it in GitHub Desktop.
tiny_IRremote - Arduino IRremote ported to the ATtiny
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* tiny_IRremote | |
* | |
* Version 0.3 June, 2018 | |
* Daniel Quadros | |
* Added LG support from https://github.com/z3t0/Arduino-IRremote | |
* Fixed NEC_ONE_SPACE | |
* | |
* Version 0.2 July, 2016 | |
* Christian D'Abrera | |
* Fixed what was originally rather broken code from http://www.gammon.com.au/Arduino/ | |
* ...itself based on work by Ken Shirriff. | |
* | |
* This code was tested for both sending and receiving IR on an ATtiny85 DIP-8 chip. | |
* IMPORTANT: IRsend only works from PB4 ("pin 4" according to Arduino). You will need to | |
* determine which physical pin this corresponds to for your chip, and connect your transmitter | |
* LED there. | |
* | |
* Copyright 2009 Ken Shirriff | |
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html | |
* | |
* Interrupt code based on NECIRrcv by Joe Knapp | |
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556 | |
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/ | |
*/ | |
#include "tiny_IRremote.h" | |
#include "tiny_IRremoteInt.h" | |
// Provides ISR | |
#include <avr/interrupt.h> | |
volatile irparams_t irparams; | |
// These versions of MATCH, MATCH_MARK, and MATCH_SPACE are only for debugging. | |
// To use them, set DEBUG in tiny_IRremoteInt.h | |
// Normally macros are used for efficiency | |
#ifdef DEBUG | |
#error debug enabled | |
int MATCH(int measured, int desired) { | |
Serial.print("Testing: "); | |
Serial.print(TICKS_LOW(desired), DEC); | |
Serial.print(" <= "); | |
Serial.print(measured, DEC); | |
Serial.print(" <= "); | |
Serial.println(TICKS_HIGH(desired), DEC); | |
return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired); | |
} | |
int MATCH_MARK(int measured_ticks, int desired_us) { | |
Serial.print("Testing mark "); | |
Serial.print(measured_ticks * USECPERTICK, DEC); | |
Serial.print(" vs "); | |
Serial.print(desired_us, DEC); | |
Serial.print(": "); | |
Serial.print(TICKS_LOW(desired_us + MARK_EXCESS), DEC); | |
Serial.print(" <= "); | |
Serial.print(measured_ticks, DEC); | |
Serial.print(" <= "); | |
Serial.println(TICKS_HIGH(desired_us + MARK_EXCESS), DEC); | |
return measured_ticks >= TICKS_LOW(desired_us + MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS); | |
} | |
int MATCH_SPACE(int measured_ticks, int desired_us) { | |
Serial.print("Testing space "); | |
Serial.print(measured_ticks * USECPERTICK, DEC); | |
Serial.print(" vs "); | |
Serial.print(desired_us, DEC); | |
Serial.print(": "); | |
Serial.print(TICKS_LOW(desired_us - MARK_EXCESS), DEC); | |
Serial.print(" <= "); | |
Serial.print(measured_ticks, DEC); | |
Serial.print(" <= "); | |
Serial.println(TICKS_HIGH(desired_us - MARK_EXCESS), DEC); | |
return measured_ticks >= TICKS_LOW(desired_us - MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS); | |
} | |
#endif | |
void IRsend::sendNEC(unsigned long data, int nbits) | |
{ | |
enableIROut(38); | |
mark(NEC_HDR_MARK); | |
space(NEC_HDR_SPACE); | |
for (int i = 0; i < nbits; i++) { | |
if (data & TOPBIT) { | |
mark(NEC_BIT_MARK); | |
space(NEC_ONE_SPACE); | |
} | |
else { | |
mark(NEC_BIT_MARK); | |
space(NEC_ZERO_SPACE); | |
} | |
data <<= 1; | |
} | |
mark(NEC_BIT_MARK); | |
space(0); | |
} | |
void IRsend::sendSony(unsigned long data, int nbits) { | |
enableIROut(40); | |
mark(SONY_HDR_MARK); | |
space(SONY_HDR_SPACE); | |
data = data << (32 - nbits); | |
for (int i = 0; i < nbits; i++) { | |
if (data & TOPBIT) { | |
mark(SONY_ONE_MARK); | |
space(SONY_HDR_SPACE); | |
} | |
else { | |
mark(SONY_ZERO_MARK); | |
space(SONY_HDR_SPACE); | |
} | |
data <<= 1; | |
} | |
} | |
void IRsend::sendRaw(unsigned int buf[], int len, int hz) | |
{ | |
enableIROut(hz); | |
for (int i = 0; i < len; i++) { | |
if (i & 1) { | |
space(buf[i]); | |
} | |
else { | |
mark(buf[i]); | |
} | |
} | |
space(0); // Just to be sure | |
} | |
// Note: first bit must be a one (start bit) | |
void IRsend::sendRC5(unsigned long data, int nbits) | |
{ | |
enableIROut(36); | |
data = data << (32 - nbits); | |
mark(RC5_T1); // First start bit | |
space(RC5_T1); // Second start bit | |
mark(RC5_T1); // Second start bit | |
for (int i = 0; i < nbits; i++) { | |
if (data & TOPBIT) { | |
space(RC5_T1); // 1 is space, then mark | |
mark(RC5_T1); | |
} | |
else { | |
mark(RC5_T1); | |
space(RC5_T1); | |
} | |
data <<= 1; | |
} | |
space(0); // Turn off at end | |
} | |
// Caller needs to take care of flipping the toggle bit | |
void IRsend::sendRC6(unsigned long data, int nbits) | |
{ | |
enableIROut(36); | |
data = data << (32 - nbits); | |
mark(RC6_HDR_MARK); | |
space(RC6_HDR_SPACE); | |
mark(RC6_T1); // start bit | |
space(RC6_T1); | |
int t; | |
for (int i = 0; i < nbits; i++) { | |
if (i == 3) { | |
// double-wide trailer bit | |
t = 2 * RC6_T1; | |
} | |
else { | |
t = RC6_T1; | |
} | |
if (data & TOPBIT) { | |
mark(t); | |
space(t); | |
} | |
else { | |
space(t); | |
mark(t); | |
} | |
data <<= 1; | |
} | |
space(0); // Turn off at end | |
} | |
void IRsend::sendLG(unsigned long data, int nbits) | |
{ | |
// Set IR carrier frequency | |
enableIROut(38); | |
// Header | |
mark(LG_HDR_MARK); | |
space(LG_HDR_SPACE); | |
mark(LG_BIT_MARK); | |
// Data | |
for (unsigned long mask = 1UL << (nbits - 1); mask; mask >>= 1) { | |
if (data & mask) { | |
space(LG_ONE_SPACE); | |
mark(LG_BIT_MARK); | |
} else { | |
space(LG_ZERO_SPACE); | |
mark(LG_BIT_MARK); | |
} | |
} | |
space(0); // Always end with the LED off | |
} | |
void IRsend::mark(int time) { | |
// Sends an IR mark for the specified number of microseconds. | |
// The mark output is modulated at the PWM frequency. | |
GTCCR |= _BV(COM1B1); // Enable pin 3 PWM output (PB4 - Arduino D4) | |
delayMicroseconds(time); | |
} | |
/* Leave pin off for time (given in microseconds) */ | |
void IRsend::space(int time) { | |
// Sends an IR space for the specified number of microseconds. | |
// A space is no output, so the PWM output is disabled. | |
GTCCR &= ~(_BV(COM1B1)); // Disable pin 3 PWM output (PB4 - Arduino D4) | |
delayMicroseconds(time); | |
} | |
void IRsend::enableIROut(int khz) { | |
// Enables IR output. The khz value controls the modulation frequency in kilohertz. | |
// The IR output will be on pin 3 (PB4 - Arduino D4) (OC1B). | |
// This routine is designed for 36-40KHz; if you use it for other values, it's up to you | |
// to make sure it gives reasonable results. (Watch out for overflow / underflow / rounding.) | |
// TIMER1 is used in fast PWM mode, with OCR1Ccontrolling the frequency and OCR1B | |
// controlling the duty cycle. | |
// There is no prescaling, so the output frequency is 8MHz / (2 * OCR1C) | |
// To turn the output on and off, we leave the PWM running, but connect and disconnect the output pin. | |
// A few hours staring at the ATmega documentation and this will all make sense. | |
// See my Secrets of Arduino PWM at http://arcfn.com/2009/07/secrets-of-arduino-pwm.html for details. | |
// Disable the Timer1 Interrupt (which is used for receiving IR) | |
TIMSK &= ~_BV(TOIE1); //Timer1 Overflow Interrupt | |
pinMode(4, OUTPUT); // (PB4 - Arduino D4 - physical pin 3) | |
digitalWrite(4, LOW); // When not sending PWM, we want it low | |
// CTC1 = 1: TOP value set to OCR1C | |
// CS = 0001: No Prescaling | |
TCCR1 = _BV(CTC1) | _BV(CS10); | |
// PWM1B = 1: Enable PWM for OCR1B | |
GTCCR = _BV(PWM1B); | |
// The top value for the timer. The modulation frequency will be SYSCLOCK / OCR1C. | |
OCR1C = SYSCLOCK / khz / 1000; | |
OCR1B = OCR1C / 3; // 33% duty cycle | |
} | |
IRrecv::IRrecv(int recvpin) | |
{ | |
irparams.recvpin = recvpin; | |
} | |
// initialization | |
void IRrecv::enableIRIn() { | |
// setup pulse clock timer interrupt | |
GTCCR = 0; // normal, non-PWM mode | |
//Prescale /4 (8M/4 = 0.5 microseconds per tick) | |
// Therefore, the timer interval can range from 0.5 to 128 microseconds | |
// depending on the reset value (255 to 0) | |
TCCR1 = _BV(CS11) | _BV(CS10); | |
//TIMER1 Overflow Interrupt Enable | |
TIMSK |= _BV(TOIE1); | |
RESET_TIMER1; | |
sei(); // enable interrupts | |
// initialize state machine variables | |
irparams.rcvstate = STATE_IDLE; | |
irparams.rawlen = 0; | |
// set pin modes | |
pinMode(irparams.recvpin, INPUT); | |
} | |
// TIMER1 interrupt code to collect raw data. | |
// Widths of alternating SPACE, MARK are recorded in rawbuf. | |
// Recorded in ticks of 50 microseconds. | |
// rawlen counts the number of entries recorded so far. | |
// First entry is the SPACE between transmissions. | |
// As soon as a SPACE gets long, ready is set, state switches to IDLE, timing of SPACE continues. | |
// As soon as first MARK arrives, gap width is recorded, ready is cleared, and new logging starts | |
ISR(TIM1_OVF_vect) | |
{ | |
RESET_TIMER1; | |
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin); | |
irparams.timer++; // One more 50us tick | |
if (irparams.rawlen >= RAWBUF) { | |
// Buffer overflow | |
irparams.rcvstate = STATE_STOP; | |
} | |
switch(irparams.rcvstate) { | |
case STATE_IDLE: // In the middle of a gap | |
if (irdata == MARK) { | |
if (irparams.timer < GAP_TICKS) { | |
// Not big enough to be a gap. | |
irparams.timer = 0; | |
} | |
else { | |
// gap just ended, record duration and start recording transmission | |
irparams.rawlen = 0; | |
irparams.rawbuf[irparams.rawlen++] = irparams.timer; | |
irparams.timer = 0; | |
irparams.rcvstate = STATE_MARK; | |
} | |
} | |
break; | |
case STATE_MARK: // timing MARK | |
if (irdata == SPACE) { // MARK ended, record time | |
irparams.rawbuf[irparams.rawlen++] = irparams.timer; | |
irparams.timer = 0; | |
irparams.rcvstate = STATE_SPACE; | |
} | |
break; | |
case STATE_SPACE: // timing SPACE | |
if (irdata == MARK) { // SPACE just ended, record it | |
irparams.rawbuf[irparams.rawlen++] = irparams.timer; | |
irparams.timer = 0; | |
irparams.rcvstate = STATE_MARK; | |
} | |
else { // SPACE | |
if (irparams.timer > GAP_TICKS) { | |
// big SPACE, indicates gap between codes | |
// Mark current code as ready for processing | |
// Switch to STOP | |
// Don't reset timer; keep counting space width | |
irparams.rcvstate = STATE_STOP; | |
} | |
} | |
break; | |
case STATE_STOP: // waiting, measuring gap | |
if (irdata == MARK) { // reset gap timer | |
irparams.timer = 0; | |
} | |
break; | |
} | |
} | |
void IRrecv::resume() { | |
irparams.rcvstate = STATE_IDLE; | |
irparams.rawlen = 0; | |
} | |
// Decodes the received IR message | |
// Returns 0 if no data ready, 1 if data ready. | |
// Results of decoding are stored in results | |
int IRrecv::decode(decode_results *results) { | |
results->rawbuf = irparams.rawbuf; | |
results->rawlen = irparams.rawlen; | |
if (irparams.rcvstate != STATE_STOP) { | |
return ERR; | |
} | |
#ifdef DEBUG | |
Serial.println("Attempting NEC decode"); | |
#endif | |
if (decodeNEC(results)) { | |
return DECODED; | |
} | |
#ifdef DEBUG | |
Serial.println("Attempting Sony decode"); | |
#endif | |
if (decodeSony(results)) { | |
return DECODED; | |
} | |
#ifdef DEBUG | |
Serial.println("Attempting RC5 decode"); | |
#endif | |
if (decodeRC5(results)) { | |
return DECODED; | |
} | |
#ifdef DEBUG | |
Serial.println("Attempting RC6 decode"); | |
#endif | |
if (decodeRC6(results)) { | |
return DECODED; | |
} | |
#ifdef DEBUG | |
Serial.println("Attempting LG decode"); | |
#endif | |
if (decodeLG(results)) { | |
return DECODED; | |
} | |
if (results->rawlen >= 6) { | |
// Only return raw buffer if at least 6 bits | |
results->decode_type = UNKNOWN; | |
results->bits = 0; | |
results->value = 0; | |
return DECODED; | |
} | |
// Throw away and start over | |
resume(); | |
return ERR; | |
} | |
bool IRrecv::decodeNEC(decode_results *results) { | |
long data = 0; | |
int offset = 1; // Skip first space | |
// Initial mark | |
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) { | |
return ERR; | |
} | |
offset++; | |
// Check for repeat | |
if (irparams.rawlen == 4 && | |
MATCH_SPACE(results->rawbuf[offset], NEC_RPT_SPACE) && | |
MATCH_MARK(results->rawbuf[offset+1], NEC_BIT_MARK)) { | |
results->bits = 0; | |
results->value = REPEAT; | |
results->decode_type = NEC; | |
return DECODED; | |
} | |
if (irparams.rawlen < 2 * NEC_BITS + 4) { | |
return ERR; | |
} | |
// Initial space | |
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) { | |
return ERR; | |
} | |
offset++; | |
for (int i = 0; i < NEC_BITS; i++) { | |
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) { | |
return ERR; | |
} | |
offset++; | |
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE)) { | |
data = (data << 1) | 1; | |
} | |
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) { | |
data <<= 1; | |
} | |
else { | |
return ERR; | |
} | |
offset++; | |
} | |
// Success | |
results->bits = NEC_BITS; | |
results->value = data; | |
results->decode_type = NEC; | |
return DECODED; | |
} | |
bool IRrecv::decodeSony(decode_results *results) { | |
long data = 0; | |
if (irparams.rawlen < 2 * SONY_BITS + 2) { | |
return ERR; | |
} | |
int offset = 1; // Skip first space | |
// Initial mark | |
if (!MATCH_MARK(results->rawbuf[offset], SONY_HDR_MARK)) { | |
return ERR; | |
} | |
offset++; | |
while (offset + 1 < irparams.rawlen) { | |
if (!MATCH_SPACE(results->rawbuf[offset], SONY_HDR_SPACE)) { | |
break; | |
} | |
offset++; | |
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) { | |
data = (data << 1) | 1; | |
} | |
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) { | |
data <<= 1; | |
} | |
else { | |
return ERR; | |
} | |
offset++; | |
} | |
// Success | |
results->bits = (offset - 1) / 2; | |
if (results->bits < 12) { | |
results->bits = 0; | |
return ERR; | |
} | |
results->value = data; | |
results->decode_type = SONY; | |
return DECODED; | |
} | |
// Gets one undecoded level at a time from the raw buffer. | |
// The RC5/6 decoding is easier if the data is broken into time intervals. | |
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1, | |
// successive calls to getRClevel will return MARK, MARK, SPACE. | |
// offset and used are updated to keep track of the current position. | |
// t1 is the time interval for a single bit in microseconds. | |
// Returns -1 for error (measured time interval is not a multiple of t1). | |
int IRrecv::getRClevel(decode_results *results, int *offset, int *used, int t1) { | |
if (*offset >= results->rawlen) { | |
// After end of recorded buffer, assume SPACE. | |
return SPACE; | |
} | |
int width = results->rawbuf[*offset]; | |
int val = ((*offset) % 2) ? MARK : SPACE; | |
int correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS; | |
int avail; | |
if (MATCH(width, t1 + correction)) { | |
avail = 1; | |
} | |
else if (MATCH(width, 2*t1 + correction)) { | |
avail = 2; | |
} | |
else if (MATCH(width, 3*t1 + correction)) { | |
avail = 3; | |
} | |
else { | |
return -1; | |
} | |
(*used)++; | |
if (*used >= avail) { | |
*used = 0; | |
(*offset)++; | |
} | |
#ifdef DEBUG | |
if (val == MARK) { | |
Serial.println("MARK"); | |
} | |
else { | |
Serial.println("SPACE"); | |
} | |
#endif | |
return val; | |
} | |
bool IRrecv::decodeRC5(decode_results *results) { | |
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) { | |
return ERR; | |
} | |
int offset = 1; // Skip gap space | |
long data = 0; | |
int used = 0; | |
// Get start bits | |
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR; | |
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return ERR; | |
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR; | |
int nbits; | |
for (nbits = 0; offset < irparams.rawlen; nbits++) { | |
int levelA = getRClevel(results, &offset, &used, RC5_T1); | |
int levelB = getRClevel(results, &offset, &used, RC5_T1); | |
if (levelA == SPACE && levelB == MARK) { | |
// 1 bit | |
data = (data << 1) | 1; | |
} | |
else if (levelA == MARK && levelB == SPACE) { | |
// zero bit | |
data <<= 1; | |
} | |
else { | |
return ERR; | |
} | |
} | |
// Success | |
results->bits = nbits; | |
results->value = data; | |
results->decode_type = RC5; | |
return DECODED; | |
} | |
bool IRrecv::decodeRC6(decode_results *results) { | |
if (results->rawlen < MIN_RC6_SAMPLES) { | |
return ERR; | |
} | |
int offset = 1; // Skip first space | |
// Initial mark | |
if (!MATCH_MARK(results->rawbuf[offset], RC6_HDR_MARK)) { | |
return ERR; | |
} | |
offset++; | |
if (!MATCH_SPACE(results->rawbuf[offset], RC6_HDR_SPACE)) { | |
return ERR; | |
} | |
offset++; | |
long data = 0; | |
int used = 0; | |
// Get start bit (1) | |
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return ERR; | |
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return ERR; | |
int nbits; | |
for (nbits = 0; offset < results->rawlen; nbits++) { | |
int levelA, levelB; // Next two levels | |
levelA = getRClevel(results, &offset, &used, RC6_T1); | |
if (nbits == 3) { | |
// T bit is double wide; make sure second half matches | |
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return ERR; | |
} | |
levelB = getRClevel(results, &offset, &used, RC6_T1); | |
if (nbits == 3) { | |
// T bit is double wide; make sure second half matches | |
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return ERR; | |
} | |
if (levelA == MARK && levelB == SPACE) { // reversed compared to RC5 | |
// 1 bit | |
data = (data << 1) | 1; | |
} | |
else if (levelA == SPACE && levelB == MARK) { | |
// zero bit | |
data <<= 1; | |
} | |
else { | |
return ERR; // Error | |
} | |
} | |
// Success | |
results->bits = nbits; | |
results->value = data; | |
results->decode_type = RC6; | |
return DECODED; | |
} | |
bool IRrecv::decodeLG(decode_results *results) { | |
long data = 0; | |
int offset = 1; // Skip first space | |
// Check we have the right amount of data | |
if (irparams.rawlen < (2 * LG_BITS) + 1 ) return false ; | |
// Initial mark/space | |
if (!MATCH_MARK(results->rawbuf[offset++], LG_HDR_MARK)) return false ; | |
if (!MATCH_SPACE(results->rawbuf[offset++], LG_HDR_SPACE)) return false ; | |
for (int i = 0; i < LG_BITS; i++) { | |
if (!MATCH_MARK(results->rawbuf[offset++], LG_BIT_MARK)) return false ; | |
if (MATCH_SPACE(results->rawbuf[offset], LG_ONE_SPACE)) data = (data << 1) | 1 ; | |
else if (MATCH_SPACE(results->rawbuf[offset], LG_ZERO_SPACE)) data = (data << 1) | 0 ; | |
else return false ; | |
offset++; | |
} | |
// Stop bit | |
if (!MATCH_MARK(results->rawbuf[offset], LG_BIT_MARK)) return false ; | |
// Success | |
results->bits = LG_BITS; | |
results->value = data; | |
results->decode_type = LG; | |
return true; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* tiny_IRremote | |
* | |
* Version 0.3 June, 2018 | |
* Daniel Quadros | |
* Added LG support from https://github.com/z3t0/Arduino-IRremote | |
* Fixed NEC_ONE_SPACE | |
* | |
* Version 0.2 July, 2016 | |
* Christian D'Abrera | |
* Fixed what was originally rather broken code from http://www.gammon.com.au/Arduino/ | |
* ...itself based on work by Ken Shirriff. | |
* | |
* This code was tested for both sending and receiving IR on an ATtiny85 DIP-8 chip. | |
* IMPORTANT: IRsend only works from PB4 ("pin 4" according to Arduino). You will need to | |
* determine which physical pin this corresponds to for your chip, and connect your transmitter | |
* LED there. | |
* | |
* Copyright 2009 Ken Shirriff | |
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com | |
* | |
* Interrupt code based on NECIRrcv by Joe Knapp | |
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556 | |
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/ | |
*/ | |
#ifndef tiny_IRremote_h | |
#define tiny_IRremote_h | |
// The following are compile-time library options. | |
// If you change them, recompile the library. | |
// If DEBUG is defined, a lot of debugging output will be printed during decoding. | |
// TEST must be defined for the IRtest unittests to work. It will make some | |
// methods virtual, which will be slightly slower, which is why it is optional. | |
// #define DEBUG | |
// #define TEST | |
// Results returned from the decoder | |
class decode_results { | |
public: | |
int decode_type; // NEC, SONY, RC5, LG, UNKNOWN | |
unsigned long value; // Decoded value | |
int bits; // Number of bits in decoded value | |
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks | |
int rawlen; // Number of records in rawbuf. | |
}; | |
// Values for decode_type | |
#define NEC 1 | |
#define SONY 2 | |
#define RC5 3 | |
#define RC6 4 | |
#define LG 5 | |
#define UNKNOWN -1 | |
// Decoded value for NEC when a repeat code is received | |
#define REPEAT 0xffffffff | |
// main class for receiving IR | |
class IRrecv | |
{ | |
public: | |
IRrecv(int recvpin); | |
int decode(decode_results *results); | |
void enableIRIn(); | |
void resume(); | |
private: | |
// These are called by decode | |
int getRClevel(decode_results *results, int *offset, int *used, int t1); | |
bool decodeNEC(decode_results *results); | |
bool decodeSony(decode_results *results); | |
bool decodeRC5(decode_results *results); | |
bool decodeRC6(decode_results *results); | |
bool decodeLG(decode_results *results); | |
} | |
; | |
// Only used for testing; can remove virtual for shorter code | |
#ifdef TEST | |
#define VIRTUAL virtual | |
#else | |
#define VIRTUAL | |
#endif | |
class IRsend | |
{ | |
public: | |
IRsend() {} | |
void sendNEC(unsigned long data, int nbits); | |
void sendSony(unsigned long data, int nbits); | |
void sendRaw(unsigned int buf[], int len, int hz); | |
void sendRC5(unsigned long data, int nbits); | |
void sendRC6(unsigned long data, int nbits); | |
void sendLG(unsigned long data, int nbits); | |
// private: | |
void enableIROut(int khz); | |
VIRTUAL void mark(int usec); | |
VIRTUAL void space(int usec); | |
} | |
; | |
// Some useful constants | |
#define USECPERTICK 50 // microseconds per clock interrupt tick | |
#define RAWBUF 76 // Length of raw duration buffer | |
// Marks tend to be 100us too long, and spaces 100us too short | |
// when received due to sensor lag. | |
#define MARK_EXCESS 100 | |
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* tiny_IRremote | |
* | |
* Version 0.3 June, 2018 | |
* Daniel Quadros | |
* Added LG support from https://github.com/z3t0/Arduino-IRremote | |
* Fixed NEC_ONE_SPACE | |
* | |
* Version 0.2 July, 2016 | |
* Christian D'Abrera | |
* Fixed what was originally rather broken code from http://www.gammon.com.au/Arduino/ | |
* ...itself based on work by Ken Shirriff. | |
* | |
* This code was tested for both sending and receiving IR on an ATtiny85 DIP-8 chip. | |
* IMPORTANT: IRsend only works from PB4 ("pin 4" according to Arduino). You will need to | |
* determine which physical pin this corresponds to for your chip, and connect your transmitter | |
* LED there. | |
* | |
* Copyright 2009 Ken Shirriff | |
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html | |
* | |
* Interrupt code based on NECIRrcv by Joe Knapp | |
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556 | |
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/ | |
*/ | |
#ifndef tiny_IRremoteint_h | |
#define tiny_IRremoteint_h | |
#include <Arduino.h> | |
#define CLKFUDGE 5 // fudge factor for clock interrupt overhead | |
#define CLK 256 // max value for clock (timer 2) | |
#define PRESCALE 4 // TIMER1 clock prescale | |
#if defined (F_CPU) | |
#define SYSCLOCK F_CPU // main Arduino clock | |
#else | |
#define SYSCLOCK 8000000 // default ATtiny clock | |
#endif | |
#define CLKSPERUSEC (SYSCLOCK/PRESCALE/1000000) // timer clocks per microsecond | |
#define ERR 0 | |
#define DECODED 1 | |
// defines for setting and clearing register bits | |
#ifndef cbi | |
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) | |
#endif | |
#ifndef sbi | |
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) | |
#endif | |
// clock timer reset value | |
#define INIT_TIMER_COUNT1 (CLK - USECPERTICK*CLKSPERUSEC + CLKFUDGE) | |
#define RESET_TIMER1 TCNT1 = INIT_TIMER_COUNT1 | |
// pulse parameters in usec | |
#define NEC_HDR_MARK 9000 | |
#define NEC_HDR_SPACE 4500 | |
#define NEC_BIT_MARK 560 | |
#define NEC_ONE_SPACE 1690 | |
#define NEC_ZERO_SPACE 560 | |
#define NEC_RPT_SPACE 2250 | |
#define SONY_HDR_MARK 2400 | |
#define SONY_HDR_SPACE 600 | |
#define SONY_ONE_MARK 1200 | |
#define SONY_ZERO_MARK 600 | |
#define SONY_RPT_LENGTH 45000 | |
#define RC5_T1 889 | |
#define RC5_RPT_LENGTH 46000 | |
#define RC6_HDR_MARK 2666 | |
#define RC6_HDR_SPACE 889 | |
#define RC6_T1 444 | |
#define RC6_RPT_LENGTH 46000 | |
#define LG_BITS 28 | |
#define LG_HDR_MARK 8000 | |
#define LG_HDR_SPACE 4000 | |
#define LG_BIT_MARK 600 | |
#define LG_ONE_SPACE 1600 | |
#define LG_ZERO_SPACE 550 | |
#define LG_RPT_LENGTH 60000 | |
#define TOLERANCE 25 // percent tolerance in measurements | |
#define LTOL (1.0 - TOLERANCE/100.) | |
#define UTOL (1.0 + TOLERANCE/100.) | |
#define _GAP 5000 // Minimum map between transmissions | |
#define GAP_TICKS (_GAP/USECPERTICK) | |
#define TICKS_LOW(us) (int) (((us)*LTOL/USECPERTICK)) | |
#define TICKS_HIGH(us) (int) (((us)*UTOL/USECPERTICK + 1)) | |
#ifndef DEBUG | |
#define MATCH(measured_ticks, desired_us) ((measured_ticks) >= TICKS_LOW(desired_us) && (measured_ticks) <= TICKS_HIGH(desired_us)) | |
#define MATCH_MARK(measured_ticks, desired_us) MATCH(measured_ticks, (desired_us) + MARK_EXCESS) | |
#define MATCH_SPACE(measured_ticks, desired_us) MATCH((measured_ticks), (desired_us) - MARK_EXCESS) | |
// Debugging versions are in tiny_IRremote.cpp | |
#endif | |
// receiver states | |
#define STATE_IDLE 2 | |
#define STATE_MARK 3 | |
#define STATE_SPACE 4 | |
#define STATE_STOP 5 | |
// information for the interrupt handler | |
typedef struct { | |
uint8_t recvpin; // pin for IR data from detector | |
uint8_t rcvstate; // state machine | |
unsigned int timer; // state timer, counts 50uS ticks. | |
unsigned int rawbuf[RAWBUF]; // raw data | |
uint8_t rawlen; // counter of entries in rawbuf | |
} | |
irparams_t; | |
// Defined in tiny_IRremote.cpp | |
extern volatile irparams_t irparams; | |
// IR detector output is active low | |
#define MARK 0 | |
#define SPACE 1 | |
#define TOPBIT 0x80000000 | |
#define NEC_BITS 32 | |
#define SONY_BITS 12 | |
#define MIN_RC5_SAMPLES 11 | |
#define MIN_RC6_SAMPLES 1 | |
#endif | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment