Created
November 30, 2012 15:41
-
-
Save haraldschilly/4176508 to your computer and use it in GitHub Desktop.
R/Rpy2 Plotting along a Mathematica 9 Demo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# Copyright: Harald Schilly <[email protected]> | |
# License: Apache 2.0 | |
# This script demos how rpy2 is capable to interface with R | |
# Inspired by: http://www.wolfram.com/mathematica/new-in-9/built-in-integration-with-r/hierarchical-clustering.html | |
# Dependencies (in Linux Ubuntu): python-numpy r-recommended r-cran-ggplot2 python-rpy2 | |
# get the R environment | |
import rpy2 | |
from rpy2 import robjects as robj | |
from rpy2.robjects import r | |
from rpy2.robjects.packages import importr | |
# R's base package, base.<TAB> has completion | |
base = importr('base') | |
# lattice plot package | |
lattice = importr('lattice') | |
# package containing lot of datasets | |
datasets = importr('datasets') | |
# activate seamless conversions of numpy ndarrays to R objects | |
from rpy2.robjects import numpy2ri | |
numpy2ri.activate() | |
# despite Python's "print", we can also expose R's "print" | |
rprint = rpy2.robjects.globalenv.get("print") | |
### the actual fun starts here | |
# Data straight from numpy | |
import numpy as np | |
mdata = np.random.randn(10, 5) | |
# Python's print vs. R's print | |
print mdata | |
rprint(mdata) # different | |
print r.summary(mdata) # rprint should be the same | |
# The following are two different ways, how the dimnames can be set | |
if False: | |
# Case 1: let's do what Mathematica does | |
# y in the global variable scope | |
robj.globalenv['y'] = mdata | |
# evaluation without ugly escaping | |
r(""" | |
dimnames(y) <- list( | |
paste("g", 1:10, sep=""), | |
paste("t", 1:5, sep="")) | |
y | |
""") | |
# show what's there: | |
mdata = y = robj.globalenv['y'] | |
rprint(y) | |
else: | |
# Case 2: robject.do_slot("...") and rinterface.StrSexpVector | |
# see: http://rpy.sourceforge.net/rpy2/doc-2.1/html/rinterface.html#pass-by-value-paradigm | |
# mdata converted to an R object | |
mdata = numpy2ri.numpy2ri(mdata) | |
import rpy2.rinterface as ri | |
# get dimensions automatically (as an extra) | |
dims = list(mdata.do_slot("dim")) | |
descr = ri.baseenv["list"]( | |
ri.StrSexpVector(['g%s'%_ for _ in range(dims[0])]), | |
ri.StrSexpVector(['t%s'%_ for _ in range(dims[1])])) | |
mdata.do_slot_assign("dimnames", descr) | |
# Note: Laurent Gautier pointed out, that one can use ro.ListVector | |
# not sure how, though ... | |
# http://blog.harald.schil.ly/2012/11/mathematica-9s-r-integration-vs-rpy2.html?showComment=1354737231460#c7980673096108868874 | |
# correlation and distance matrices | |
corrm = r.cor(r.t(mdata), method="spearman") | |
stats = importr("stats") | |
# no idea how to do the 1-matrix automagically | |
robj.globalenv['corrm'] = corrm | |
distm = stats.as_dist(r("1-corrm")) | |
rprint(corrm) | |
rprint(distm) | |
# do the clustering | |
hr = stats.hclust(distm, method = "complete", members = r("NULL")) | |
# plotting can be done, too | |
# http://rpy.sourceforge.net/rpy2/doc-2.2/html/graphics.html | |
# fire up ggplot2 | |
ggplot2 = importr('ggplot2') | |
# we won't use it, see rpy2 documentation for working examples | |
# plotting to PNG, instead of the usual X11 | |
grdevices = importr('grDevices') | |
grdevices.png(file="mma9rpy2.png", width=512, height=300) | |
try: | |
r.par(mfrow = r.c(1,2)) | |
r.plot(hr, hang = 0.1) | |
r.plot(hr, hang = -0.1) | |
finally: | |
# end of plotting, closing png device | |
grdevices.dev_off() | |
# feel free to replace png with pdf (function and filename) | |
grdevices.png(file="mma9rpy2-2.png", width = 512, height = 512) | |
try: | |
r.heatmap(mdata) | |
finally: | |
grdevices.dev_off() | |
# Note: the artefacts in the plot are known, workaraound in the pipeline :-) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment